Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/8012
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2008-03-17T10:44:57Z-
dc.date.available2008-03-17T10:44:57Z-
dc.date.issued2008-
dc.identifier.citationDito, G & Lu, JH & Maeda, Y & Weinstein, A (Ed.) POISSON GEOMETRY IN MATHEMATICS AND PHYSICS. p. 273-299.-
dc.identifier.isbn978-0-8218-4423-6-
dc.identifier.issn0271-4132-
dc.identifier.urihttp://hdl.handle.net/1942/8012-
dc.description.abstractIn this paper we introduce non-commutative analogues for the quasi-Hamiltonian G-spaces introduced by Alekseev, Malkin and Meinrenken. We outline the connection with the non-commutative analogues of quasi-Poisson algebras which the author had introduced earlier.-
dc.language.isoen-
dc.publisherAMER MATHEMATICAL SOC-
dc.relation.ispartofseriesCONTEMPORARY MATHEMATICS SERIES-
dc.titleNon-commutative quasi-Hamiltonian spaces-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsDito, G-
local.bibliographicCitation.authorsLu, JH-
local.bibliographicCitation.authorsMaeda, Y-
local.bibliographicCitation.authorsWeinstein, A-
local.bibliographicCitation.conferencedateJUN 05-09, 2006-
local.bibliographicCitation.conferencename5th International Conference on Poisson Geomentry in Mathematics and Physics-
local.bibliographicCitation.conferenceplaceTokyo, JAPAN-
dc.identifier.epage299-
dc.identifier.spage273-
dc.identifier.volume450-
local.format.pages27-
local.bibliographicCitation.jcatC1-
dc.description.notesUniv Hasselt, Dept WINI, Diepenbeek, B-3090 Belgium.Van den Bergh, M, Univ Hasselt, Dept WINI, Diepenbeek, B-3090 Belgium.-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC1-
dc.identifier.isi000253275400015-
local.bibliographicCitation.btitlePOISSON GEOMETRY IN MATHEMATICS AND PHYSICS-
item.fulltextWith Fulltext-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationVAN DEN BERGH, Michel (2008) Non-commutative quasi-Hamiltonian spaces. In: Dito, G & Lu, JH & Maeda, Y & Weinstein, A (Ed.) POISSON GEOMETRY IN MATHEMATICS AND PHYSICS. p. 273-299..-
item.accessRightsClosed Access-
item.validationecoom 2009-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
0703293v1.pdfNon Peer-reviewed author version285.52 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.