Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/8048
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVALKENBORG, Dirk-
dc.contributor.authorJANSEN, Ivy-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.date.accessioned2008-03-20T09:22:18Z-
dc.date.availableNO_RESTRICTION-
dc.date.issued2008-
dc.identifier.citationJOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 19(5). p. 703-712-
dc.identifier.issn1044-0305-
dc.identifier.urihttp://hdl.handle.net/1942/8048-
dc.description.abstractThe process of monoisotopic mass determination, i.e., nomination of the correct peak of an isotopically resolved group of peptide peaks as a monoisotopic peak, requires prior information about the isotopic distribution of the peptide. This points immediately to the difficulty of monoisotopic mass determination, whereas a single mass spectrum does not contain information about the atomic composition of a peptide and therefore the isotopic distribution of the peptide remains unknown. To solve this problem a technique is required, which is able to estimate the isotopic distribution given the information of a single mass spectrum. Senko et al. calculated the average isotopic distribution for any mass peptide via the multinomial expansion (Yergey 1983) [1], using a scaled version of the average amino acid Averagine (Senko et al. 1995) [2]. Another method, introduced by Breen et al., approximates the result of the multinomial expansion by a Poisson model (Breen et al. 2000) [3]. Although both methods perform well, they have their specific limitations. In this manuscript, we propose an alternative method for the prediction of the isotopic distribution based on a model for consecutive ratios of peaks from the isotopic distribution, similar in spirit to the approach introduced by Gay et al. (1999) [5]. The presented method is computationally simple and accurate in predicting the expected isotopic distribution. Further, we extend our method to estimate the isotopic distribution of sulphur-containing peptides. This is important because the naturally occurring isotopes of sulphur have an impact on the isotopic distribution of a peptide.-
dc.language.isoen-
dc.publisherElsevier-
dc.titleA model-based method for the prediction of the isotopic distribution of peptides-
dc.typeJournal Contribution-
dc.identifier.epage712-
dc.identifier.issue5-
dc.identifier.spage703-
dc.identifier.volume19-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.jasms.2008.01.009-
dc.identifier.isi000255722200010-
item.fulltextWith Fulltext-
item.contributorVALKENBORG, Dirk-
item.contributorJANSEN, Ivy-
item.contributorBURZYKOWSKI, Tomasz-
item.fullcitationVALKENBORG, Dirk; JANSEN, Ivy & BURZYKOWSKI, Tomasz (2008) A model-based method for the prediction of the isotopic distribution of peptides. In: JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 19(5). p. 703-712.-
item.accessRightsOpen Access-
item.validationecoom 2009-
crisitem.journal.issn1044-0305-
crisitem.journal.eissn1879-1123-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
TomaszBurzykowski6.pdfPublished version499.57 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.