Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/8158
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUMORTIER, Freddy-
dc.contributor.authorROUSSARIE, R-
dc.date.accessioned2008-04-07T12:38:52Z-
dc.date.available2008-04-07T12:38:52Z-
dc.date.issued1990-
dc.identifier.citationLECTURE NOTES IN MATHEMATICS, 1455. p. 44-73-
dc.identifier.issn0075-8434-
dc.identifier.urihttp://hdl.handle.net/1942/8158-
dc.description.abstractIt is shown that the set of C-infinity (generic) saddle loop bifurcations has a unique modulus of stability gamma epsilon]0, 1[union cup]1, infinity[ for (C(o), C(r))-equivalence, with 1 less-than-or-equal-to r less-than-or-equal-to infinity. We mean for an equivalence (x,mu) --> (h(x,mu), psi(mu)) with h continuous and psi of class C(r). The modulus gamma is the ratio of hyperbolicity at the saddle point of the connection. Already asking psi to be a lipeomorphism forces two saddle loop bifurcations to have the same modulus, while two such bifurcations with the same modulus are (C(o), +/- Identity)-equivalent. A side result states that the Poincare map of the connection is C1-conjugate to the mapping x --> x-gamma. In the last part of the paper is shown how to finish the proof that the Bogdanov-Takens bifurcation has exactly two models for (C(o), C-infinity)-equivalence.-
dc.language.isoen-
dc.publisherSPRINGER VERLAG-
dc.titleOn the saddle loop bifurcation-
dc.typeJournal Contribution-
dc.identifier.epage73-
dc.identifier.spage44-
dc.identifier.volume1455-
local.format.pages30-
dc.description.notesUNIV BOURGOGNE,DEPT MATH,UFR SCI & TECH,TOPOL LAB,CNRS,UA 755,F-21004 DIJON,FRANCE.DUMORTIER, F, LIMBURGS UNIV CENTRUM,UNIV CAMPUS,B-3610 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/BFb0085390-
dc.identifier.isiA1990FH64000003-
item.contributorDUMORTIER, Freddy-
item.contributorROUSSARIE, R-
item.fullcitationDUMORTIER, Freddy & ROUSSARIE, R (1990) On the saddle loop bifurcation. In: LECTURE NOTES IN MATHEMATICS, 1455. p. 44-73.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.