Please use this identifier to cite or link to this item:
Title: Learning (k, l)-contextual tree languages for information extraction from web pages
Authors: Raeymaekers, Stefan
Bruynooghe, Maurice
Issue Date: 2008
Publisher: SPRINGER
Source: MACHINE LEARNING, 71(2-3). p. 155-183
Abstract: This paper introduces a novel method for learning a wrapper for extraction of information from web pages, based upon (k, l)-contextual tree languages. It also introduces a method to learn good values of k and I based on a few positive and negative examples. Finally, it describes how the algorithm can be integrated in a tool for information extraction.
Notes: Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium. Univ Hasselt & Transnatl Univ Limburg, B-3590 Diepenbeek, Belgium.
Keywords: information extraction; wrapper induction; tree languages
Document URI:
ISSN: 0885-6125
e-ISSN: 1573-0565
ISI #: 000255788300002
Category: A1
Type: Journal Contribution
Validations: ecoom 2009
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
klforksRev1.pdfPreprint619.09 kBAdobe PDFView/Open
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.