Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/86
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2004-08-26T08:49:02Z-
dc.date.available2004-08-26T08:49:02Z-
dc.date.issued1977-
dc.identifier.citationStoch. Processes Appl.; 5(1), p27-37-
dc.identifier.urihttp://hdl.handle.net/1942/86-
dc.description.abstractFor a random walk governed by a general distribution function F on (−∞, +∞), we establish the exponential and subexponential asymptotic behaviour of the corresponding right Wiener-Hopf factor F+. The results apply to classes of distribution functions in recent publications: the subexponential class Image and a related (exponential) class Imageγ. Given the behaviour of F+, the Wiener-Hopf identity is used, to obtain the behaviour of F. To reverse the argument, we derive a new identity, similar in form to the first one. The results for F+ are then fruitfully applied to give a full description of the tail behaviour of the maximum of the randon walk. Also they provide new proofs for recent theorems on the tail of the waiting-time distribution in the GI/G/1 queue.-
dc.language.isoen-
dc.subjectStochastic processes-
dc.titleAsymptotic behaviour of Wiener-Hopf factors of a random walk-
dc.typeJournal Contribution-
dc.identifier.epage37-
dc.identifier.issue1-
dc.identifier.spage27-
dc.identifier.volume5-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0304-4149(77)90047-3-
item.fulltextNo Fulltext-
item.contributorVERAVERBEKE, Noel-
item.fullcitationVERAVERBEKE, Noel (1977) Asymptotic behaviour of Wiener-Hopf factors of a random walk. In: Stoch. Processes Appl.; 5(1), p27-37.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.