Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/86
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | VERAVERBEKE, Noel | - |
dc.date.accessioned | 2004-08-26T08:49:02Z | - |
dc.date.available | 2004-08-26T08:49:02Z | - |
dc.date.issued | 1977 | - |
dc.identifier.citation | Stoch. Processes Appl.; 5(1), p27-37 | - |
dc.identifier.uri | http://hdl.handle.net/1942/86 | - |
dc.description.abstract | For a random walk governed by a general distribution function F on (−∞, +∞), we establish the exponential and subexponential asymptotic behaviour of the corresponding right Wiener-Hopf factor F+. The results apply to classes of distribution functions in recent publications: the subexponential class Image and a related (exponential) class Imageγ. Given the behaviour of F+, the Wiener-Hopf identity is used, to obtain the behaviour of F. To reverse the argument, we derive a new identity, similar in form to the first one. The results for F+ are then fruitfully applied to give a full description of the tail behaviour of the maximum of the randon walk. Also they provide new proofs for recent theorems on the tail of the waiting-time distribution in the GI/G/1 queue. | - |
dc.language.iso | en | - |
dc.subject | Stochastic processes | - |
dc.title | Asymptotic behaviour of Wiener-Hopf factors of a random walk | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 37 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 27 | - |
dc.identifier.volume | 5 | - |
dc.bibliographicCitation.oldjcat | - | |
dc.identifier.doi | 10.1016/0304-4149(77)90047-3 | - |
item.fulltext | No Fulltext | - |
item.contributor | VERAVERBEKE, Noel | - |
item.fullcitation | VERAVERBEKE, Noel (1977) Asymptotic behaviour of Wiener-Hopf factors of a random walk. In: Stoch. Processes Appl.; 5(1), p27-37. | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.