Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9055
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BROECK, Christian-
dc.date.accessioned2008-12-19T10:42:41Z-
dc.date.available2008-12-19T10:42:41Z-
dc.date.issued1998-
dc.identifier.citationWong, KYM. & King, I. & Yeung, DY. (Ed.) THEORETICAL ASPECTS OF NEURAL COMPUTATION - A MULTIDISCIPLINARY PERSPECTIVE. p. 249-255.-
dc.identifier.urihttp://hdl.handle.net/1942/9055-
dc.description.abstractWe study both on-line and off-line learning in the following unsupervised learning scheme: p patterns are sampled independently from a distribution on the N-sphere with a single symmetry breaking orientation. Exact results are obtained in the limit p --> infinity and N --> infinity with finite ratio p/N. One finds that for smooth pattern distributions, the asymptotic behavior of the optimal off-line and on-line learning are identical, and saturate the Cramer-Rao inequality from statistics. For discontinuous pattern distributions on the other hand, the optimal online algorithm needs (at least) twice as many examples asymptotically to reach the optimal off-line performance.-
dc.language.isoen-
dc.publisherSPRINGER-VERLAG SINGAPORE PTE LTD-
dc.titleUnsupervised learning by examples: On-line versus off-line-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsWong, KYM.-
local.bibliographicCitation.authorsKing, I.-
local.bibliographicCitation.authorsYeung, DY.-
local.bibliographicCitation.conferencenameHong Kong International Workshop on Theoretical Aspects of Neural Computation - A Multi-Disciplinary Perspective (TANC-97)-
local.bibliographicCitation.conferenceplaceHONG KONG, MAY 26-28, 1997-
dc.identifier.epage255-
dc.identifier.spage249-
local.format.pages7-
dc.description.notesLimburgs Univ Ctr, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC1-
dc.identifier.isi000078895600023-
local.bibliographicCitation.btitleTHEORETICAL ASPECTS OF NEURAL COMPUTATION - A MULTIDISCIPLINARY PERSPECTIVE-
item.contributorVAN DEN BROECK, Christian-
item.accessRightsClosed Access-
item.fullcitationVAN DEN BROECK, Christian (1998) Unsupervised learning by examples: On-line versus off-line. In: Wong, KYM. & King, I. & Yeung, DY. (Ed.) THEORETICAL ASPECTS OF NEURAL COMPUTATION - A MULTIDISCIPLINARY PERSPECTIVE. p. 249-255..-
item.validationecoom 2000-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.