Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/9101
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | VANHOOF, Koen | - |
dc.contributor.author | WETS, Geert | - |
dc.contributor.author | DEPAIRE, Benoit | - |
dc.date.accessioned | 2009-01-08T12:56:21Z | - |
dc.date.available | 2009-01-08T12:56:21Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | Bonchi, Francesco & Berendt, Bettina & Giannotti, Fosca & Gunopulos, Dimitrios & Turini, Franco & Zaniolo, Carlo & Ramakrishnan, Naren & Wu, Xindong (Ed.) Proceedings of Eight IEEE International Conference on Data Mining Workshops: vol. 8. p. 692-699. | - |
dc.identifier.isbn | 978-0-7695-3503-6 | - |
dc.identifier.uri | http://hdl.handle.net/1942/9101 | - |
dc.description.abstract | This article introduces ARUBAS, a new framework to build associative classifiers. In contrast with many existing associative classifiers, it uses class association rules to transform the feature space and uses instance-based reasoning to classify new instances. The framework allows the researcher to use any association rule mining algorithm to produce the class association rules. Every aspect of the framework is extensively introduced and discussed and five different fitness measures used for classification purposes are defined. The empirical results determine which fitness measure is the best and compares the framework with other classifiers. These results show that the ARUBAS framework is able to produce associative classifiers which are competitive with other classification techniques. More specifically, with ARUBAS-Scheffer-phi5 we have introduced a parameter-free algorithm which is competitive with classification techniques such as C4.5, RIPPER and CBA. | - |
dc.language.iso | en | - |
dc.publisher | IEEE | - |
dc.title | ARUBAS: An Association Rule Based Similarity Framework for Associative Classifiers | - |
dc.type | Proceedings Paper | - |
dc.bibliographicCitation.bvolume | 8 | - |
local.bibliographicCitation.authors | Bonchi, Francesco | - |
local.bibliographicCitation.authors | Berendt, Bettina | - |
local.bibliographicCitation.authors | Giannotti, Fosca | - |
local.bibliographicCitation.authors | Gunopulos, Dimitrios | - |
local.bibliographicCitation.authors | Turini, Franco | - |
local.bibliographicCitation.authors | Zaniolo, Carlo | - |
local.bibliographicCitation.authors | Ramakrishnan, Naren | - |
local.bibliographicCitation.authors | Wu, Xindong | - |
local.bibliographicCitation.conferencename | IEEE International Conference on Data Mining Workshops 2008 | - |
dc.bibliographicCitation.conferencenr | 8 | - |
local.bibliographicCitation.conferenceplace | Pisa, Italy, 15-19 December 2008 | - |
dc.identifier.epage | 699 | - |
dc.identifier.spage | 692 | - |
local.bibliographicCitation.jcat | C1 | - |
local.type.specified | Proceedings Paper | - |
dc.bibliographicCitation.oldjcat | C2 | - |
dc.identifier.doi | 10.1109/ICDMW.2008.58 | - |
local.bibliographicCitation.btitle | Proceedings of Eight IEEE International Conference on Data Mining Workshops | - |
item.contributor | VANHOOF, Koen | - |
item.contributor | WETS, Geert | - |
item.contributor | DEPAIRE, Benoit | - |
item.fulltext | With Fulltext | - |
item.accessRights | Closed Access | - |
item.fullcitation | VANHOOF, Koen; WETS, Geert & DEPAIRE, Benoit (2008) ARUBAS: An Association Rule Based Similarity Framework for Associative Classifiers. In: Bonchi, Francesco & Berendt, Bettina & Giannotti, Fosca & Gunopulos, Dimitrios & Turini, Franco & Zaniolo, Carlo & Ramakrishnan, Naren & Wu, Xindong (Ed.) Proceedings of Eight IEEE International Conference on Data Mining Workshops: vol. 8. p. 692-699.. | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
depaire-Arubas.pdf | 142.64 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.