Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9652
Title: ON DYNAMICAL SYSTEMS CLOSE TO A PRODUCT OF m ROTATIONS
Authors: BONCKAERT, Patrick 
Carletti, Timoteo
Fontich, Ernest
Issue Date: 2009
Publisher: AMER INST MATHEMATICAL SCIENCES
Source: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 24(2). p. 349-366
Abstract: We consider one parameter families of analytic vector fields and diffeomorphisms, including for a parameter value, say epsilon = 0, the product of rotations in R-2m x R-n such that for positive values of the parameter the origin is a hyperbolic point of saddle type. We address the question of determining the limit stable invariant manifold when epsilon goes to zero as a subcenter invariant manifold when epsilon = 0.
Notes: [Bonckaert, Patrick] Hasselt Univ, B-3590 Diepenbeek, Belgium. [Carletti, Timoteo] Fac Univ Notre Dame Paix, Dept Math, B-5000 Namur, Belgium. [Fontich, Ernest] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain.
Keywords: Perturbations of rotations; subcenter invariant manifolds; bifurcations
Document URI: http://hdl.handle.net/1942/9652
ISSN: 1078-0947
e-ISSN: 1553-5231
DOI: 10.3934/dcds.2009.24.349
ISI #: 000265190500005
Category: A1
Type: Journal Contribution
Validations: ecoom 2010
Appears in Collections:Research publications

Show full item record

Page view(s)

58
checked on May 22, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.