Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9681
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.date.accessioned2009-07-15T07:31:39Z-
dc.date.availableNO_RESTRICTION-
dc.date.issued2009-
dc.identifier.citationJOURNAL OF INFORMETRICS, 3(4). p. 290-295-
dc.identifier.issn1751-1577-
dc.identifier.urihttp://hdl.handle.net/1942/9681-
dc.description.abstractExperimental data in Mansilla, Köppen, Cocho and Miramontes [Journal of Informetrics 1(2), 155-160, 2007] reveal that, if one ranks a set of journals (e.g. in a field) in decreasing order of their impact factors, the rank distribution of the logarithm of these impact factors has a typical S-shape: first a convex decrease, followed by a concave decrease. In this paper we give a mathematical formula for this distribution and explain the S-shape. Also the experimentally found smaller convex part and larger concave part is explained. If one studies the rank distribution of the impact factors themselves we now prove that we have the same S-shape but with inflection point in μ, the average of the impact factors. These distributions are valid for any type of impact factor (any publication period and any citation period). They are even valid for any sample average rank distribution.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subject.otherimpact factor, rank distribution, S-shape, Central Limit Theorem, average-
dc.subject.otherImpact factor; Rank distribution; S-shape; Central Limit Theorem; Average-
dc.titleMathematical derivation of the impact factor distribution-
dc.typeJournal Contribution-
dc.identifier.epage295-
dc.identifier.issue4-
dc.identifier.spage290-
dc.identifier.volume3-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.joi.2009.01.004-
dc.identifier.isi000269075100002-
item.validationecoom 2010-
item.fulltextWith Fulltext-
item.contributorEGGHE, Leo-
item.accessRightsOpen Access-
item.fullcitationEGGHE, Leo (2009) Mathematical derivation of the impact factor distribution. In: JOURNAL OF INFORMETRICS, 3(4). p. 290-295.-
crisitem.journal.issn1751-1577-
crisitem.journal.eissn1875-5879-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
derivation 1.pdf
  Restricted Access
Published version147.04 kBAdobe PDFView/Open    Request a copy
derivation 2.pdfPeer-reviewed author version253.6 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

24
checked on Aug 25, 2025

WEB OF SCIENCETM
Citations

23
checked on Sep 2, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.