Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.date.accessioned2009-07-15T07:34:23Z-
dc.date.issued2009-
dc.identifier.citationINFORMATION PROCESSING & MANAGEMENT, 45(4). p. 484-489-
dc.identifier.issn0306-4573-
dc.identifier.urihttp://hdl.handle.net/1942/9682-
dc.description.abstractLet X=(x(1), ... ,x(N)) and Y=(y(1), ... ,y(N)) be two decreasing vectors with positive coordinates Sigma(N)(j=1)x(j) = Sigma(N)(j=1)y(j) (representing e.g. citation data of articles of two authors or journals with the same number of publications and the same number of citations (in total)). It is remarked that if the Lorenz curve L(X) of X is above the Lorenz curve L(Y) of Y, then the g-index g(X) of X is larger than or equal to the g-index g(Y) of Y. We indicate that this is a good property for so-called impact measures which is not shared by other impact measures such as the h-index. If L(X) = L(Y) and Sigma(N)(j=1)x(j) = Sigma(N)(j=1)y(j) we prove that g(X) >= g(Y). We can even show that g(X) > g(Y) in case of integer values x(i) and y(j) and we also investigate this property for other impact measures.-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subject.otherg-Index; h-Index; Hirsch; R-index; Kosmulski; Lorenz curve-
dc.subject.otherg-Index; h-Index; Hirsch; R-index; Kosmulski; Lorenz curve-
dc.titleAn econometric property of the g-index-
dc.typeJournal Contribution-
dc.identifier.epage489-
dc.identifier.issue4-
dc.identifier.spage484-
dc.identifier.volume45-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.ipm.2009.04.001-
dc.identifier.isi000267170100008-
item.contributorEGGHE, Leo-
item.fullcitationEGGHE, Leo (2009) An econometric property of the g-index. In: INFORMATION PROCESSING & MANAGEMENT, 45(4). p. 484-489.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2010-
crisitem.journal.issn0306-4573-
crisitem.journal.eissn1873-5371-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
econometric 1.pdf
  Restricted Access
Published version158.38 kBAdobe PDFView/Open    Request a copy
econometric 2.pdfPeer-reviewed author version304.42 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.