Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/9702
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vandenhende, F. | - |
dc.contributor.author | RENARD, Didier | - |
dc.contributor.author | NIE, Yan | - |
dc.contributor.author | Kumar, A. | - |
dc.contributor.author | Miller, J. | - |
dc.contributor.author | Tauscher, J. | - |
dc.contributor.author | Witcher, J. | - |
dc.contributor.author | Zhou, Y. | - |
dc.contributor.author | Wong, D. F. | - |
dc.date.accessioned | 2009-07-30T09:40:54Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 18(2). p. 256-272 | - |
dc.identifier.issn | 1054-3406 | - |
dc.identifier.uri | http://hdl.handle.net/1942/9702 | - |
dc.description.abstract | Receptor occupancy (RO) PET is a non-invasive way to determine drug on target. Given the complexity of procedures, long acquisition times, and high cost, ligand displacement imaging trials often have a limited size and produce sparse RO results over the time course of the blocking drug. To take the best advantage of the available data, we propose a Bayesian hierarchical model to analyze RO as a function of the displacing drug. The model has three components: the first estimates RO using brain regional time-radioactivity concentrations, the second shapes the pharmacokinetic profile of the blocking drug, and the last relates PK to RO. Compared to standard 2-steps RO estimation methods, our Bayesian approach quantifies the variability of the individual RO measures. The model has also useful prediction capabilities: to quantify brain RO for dosage regimens of the drug that were not tested in the experiment. This permits the optimal dose selection of neuroscience drugs at a limited cost. We illustrate the method in the prediction of RO after multiple dosing from a single-dose trial. | - |
dc.language.iso | en | - |
dc.publisher | TAYLOR & FRANCIS INC | - |
dc.subject.other | Bayesian analysis; brain imaging; heirarchical model; PET; receptor occupancy | - |
dc.title | Bayesian hierarchical modeling of receptor occupancy in PET trials | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 272 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 256 | - |
dc.identifier.volume | 18 | - |
local.format.pages | 17 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Vandenhende, F.; Renard, D.] Lilly Res Labs, Mont St Guibert, Belgium. [Nie, Y.] Univ Hassrlt, Biostat Dept, Diepenbeek, Belgium. [Kumar, A.; Zhou, Y.] PET Ctr, Sch Med, Baltimore, MD USA. [Miller, J.] Lilly Res Labs, Clin Pharmacol, Indianapolis, IN USA. [Tauscher, J.] Lilly Res Labs, Dept Imaging, Indianapolis, IN USA. [Witcher, J.] Lilly Res Labs, Global PK PD, Indianapolis, IN USA. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
local.class | IncludeIn-ExcludeFrom-List/ExcludeFromFRIS | - |
local.class | dsPublValOverrule/internal_author_not_expected | - |
dc.identifier.doi | 10.1080/10543400701697158 | - |
dc.identifier.isi | 000253763000004 | - |
item.contributor | Vandenhende, F. | - |
item.contributor | RENARD, Didier | - |
item.contributor | NIE, Yan | - |
item.contributor | Kumar, A. | - |
item.contributor | Miller, J. | - |
item.contributor | Tauscher, J. | - |
item.contributor | Witcher, J. | - |
item.contributor | Zhou, Y. | - |
item.contributor | Wong, D. F. | - |
item.fullcitation | Vandenhende, F.; RENARD, Didier; NIE, Yan; Kumar, A.; Miller, J.; Tauscher, J.; Witcher, J.; Zhou, Y. & Wong, D. F. (2008) Bayesian hierarchical modeling of receptor occupancy in PET trials. In: JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 18(2). p. 256-272. | - |
item.accessRights | Closed Access | - |
item.fulltext | No Fulltext | - |
item.validation | ecoom 2009 | - |
crisitem.journal.issn | 1054-3406 | - |
crisitem.journal.eissn | 1520-5711 | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.