Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVandenhende, F.-
dc.contributor.authorRENARD, Didier-
dc.contributor.authorNIE, Yan-
dc.contributor.authorKumar, A.-
dc.contributor.authorMiller, J.-
dc.contributor.authorTauscher, J.-
dc.contributor.authorWitcher, J.-
dc.contributor.authorZhou, Y.-
dc.contributor.authorWong, D. F.-
dc.date.accessioned2009-07-30T09:40:54Z-
dc.date.issued2008-
dc.identifier.citationJOURNAL OF BIOPHARMACEUTICAL STATISTICS, 18(2). p. 256-272-
dc.identifier.issn1054-3406-
dc.identifier.urihttp://hdl.handle.net/1942/9702-
dc.description.abstractReceptor occupancy (RO) PET is a non-invasive way to determine drug on target. Given the complexity of procedures, long acquisition times, and high cost, ligand displacement imaging trials often have a limited size and produce sparse RO results over the time course of the blocking drug. To take the best advantage of the available data, we propose a Bayesian hierarchical model to analyze RO as a function of the displacing drug. The model has three components: the first estimates RO using brain regional time-radioactivity concentrations, the second shapes the pharmacokinetic profile of the blocking drug, and the last relates PK to RO. Compared to standard 2-steps RO estimation methods, our Bayesian approach quantifies the variability of the individual RO measures. The model has also useful prediction capabilities: to quantify brain RO for dosage regimens of the drug that were not tested in the experiment. This permits the optimal dose selection of neuroscience drugs at a limited cost. We illustrate the method in the prediction of RO after multiple dosing from a single-dose trial.-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.subject.otherBayesian analysis; brain imaging; heirarchical model; PET; receptor occupancy-
dc.titleBayesian hierarchical modeling of receptor occupancy in PET trials-
dc.typeJournal Contribution-
dc.identifier.epage272-
dc.identifier.issue2-
dc.identifier.spage256-
dc.identifier.volume18-
local.format.pages17-
local.bibliographicCitation.jcatA1-
dc.description.notes[Vandenhende, F.; Renard, D.] Lilly Res Labs, Mont St Guibert, Belgium. [Nie, Y.] Univ Hassrlt, Biostat Dept, Diepenbeek, Belgium. [Kumar, A.; Zhou, Y.] PET Ctr, Sch Med, Baltimore, MD USA. [Miller, J.] Lilly Res Labs, Clin Pharmacol, Indianapolis, IN USA. [Tauscher, J.] Lilly Res Labs, Dept Imaging, Indianapolis, IN USA. [Witcher, J.] Lilly Res Labs, Global PK PD, Indianapolis, IN USA.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
local.classIncludeIn-ExcludeFrom-List/ExcludeFromFRIS-
local.classdsPublValOverrule/internal_author_not_expected-
dc.identifier.doi10.1080/10543400701697158-
dc.identifier.isi000253763000004-
item.contributorVandenhende, F.-
item.contributorRENARD, Didier-
item.contributorNIE, Yan-
item.contributorKumar, A.-
item.contributorMiller, J.-
item.contributorTauscher, J.-
item.contributorWitcher, J.-
item.contributorZhou, Y.-
item.contributorWong, D. F.-
item.fullcitationVandenhende, F.; RENARD, Didier; NIE, Yan; Kumar, A.; Miller, J.; Tauscher, J.; Witcher, J.; Zhou, Y. & Wong, D. F. (2008) Bayesian hierarchical modeling of receptor occupancy in PET trials. In: JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 18(2). p. 256-272.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.validationecoom 2009-
crisitem.journal.issn1054-3406-
crisitem.journal.eissn1520-5711-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.