Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9825
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAchatz, P.-
dc.contributor.authorGajewski, W.-
dc.contributor.authorBustarret, E.-
dc.contributor.authorMarcenat, C.-
dc.contributor.authorPiquerel, R.-
dc.contributor.authorChapelier, C.-
dc.contributor.authorDubouchet, T.-
dc.contributor.authorWILLIAMS, Oliver-
dc.contributor.authorHAENEN, Ken-
dc.contributor.authorGarrido, J. A.-
dc.contributor.authorStutzmann, M.-
dc.date.accessioned2009-08-19T13:19:26Z-
dc.date.issued2009-
dc.identifier.citationPHYSICAL REVIEW B, 79(20)-
dc.identifier.issn1098-0121-
dc.identifier.urihttp://hdl.handle.net/1942/9825-
dc.description.abstractWe studied the transport properties of highly boron-doped nanocrystalline diamond thin films at temperatures down to 50 mK. The system undergoes a doping-induced metal-insulator transition with an interplay between intergranular conductance g and intragranular conductance g(0), as expected for a granular system. The conduction mechanism in the case of the low-conductivity films close to the metal-insulator transition has a temperature dependence similar to Efros-Shklovskii type of hopping. On the metallic side of the transition, in the normal state, a logarithmic temperature dependence of the conductivity is observed, as expected for a metallic granular system. Metallic samples far away from the transition show similarities to heavily boron-doped single-crystal diamond. Close to the transition, the behavior is richer. Global phase coherence leads in both cases to superconductivity (also checked by ac susceptibility), but a peak in the low-temperature magnetoresistance measurements occurs for samples close to the transition. Corrections to the conductance according to superconducting fluctuations account for this negative magnetoresistance.-
dc.format.extent429370 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherAMER PHYSICAL SOC-
dc.subject.otherboron; diamond; electric admittance; fluctuations in superconductors; magnetoresistance; metal-insulator transition; nanostructured materials; optical susceptibility; thin films-
dc.titleLow-temperature transport in highly boron-doped nanocrystalline diamond-
dc.typeJournal Contribution-
dc.identifier.issue20-
dc.identifier.volume79-
local.format.pages4-
local.bibliographicCitation.jcatA1-
dc.description.notes[Achatz, P.; Gajewski, W.; Garrido, J. A.; Stutzmann, M.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. [Achatz, P.; Bustarret, E.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Achatz, P.; Bustarret, E.] Univ Grenoble 1, F-38042 Grenoble 9, France. [Achatz, P.; Marcenat, C.; Piquerel, R.; Chapelier, C.; Dubouchet, T.] LaTEQS, CEA, INAC, SPSMS, F-38054 Grenoble 9, France. [Williams, O. A.; Haenen, K.] Univ Hasselt, Inst Mat Res, B-3590 Diepenbeek, Belgium. [Williams, O. A.; Haenen, K.] IMEC VZW, Div IMOMEC, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1103/PhysRevB.79.201203-
dc.identifier.isi000266501500009-
item.fulltextWith Fulltext-
item.fullcitationAchatz, P.; Gajewski, W.; Bustarret, E.; Marcenat, C.; Piquerel, R.; Chapelier, C.; Dubouchet, T.; WILLIAMS, Oliver; HAENEN, Ken; Garrido, J. A. & Stutzmann, M. (2009) Low-temperature transport in highly boron-doped nanocrystalline diamond. In: PHYSICAL REVIEW B, 79(20).-
item.contributorAchatz, P.-
item.contributorGajewski, W.-
item.contributorBustarret, E.-
item.contributorMarcenat, C.-
item.contributorPiquerel, R.-
item.contributorChapelier, C.-
item.contributorDubouchet, T.-
item.contributorWILLIAMS, Oliver-
item.contributorHAENEN, Ken-
item.contributorGarrido, J. A.-
item.contributorStutzmann, M.-
item.validationecoom 2010-
item.accessRightsClosed Access-
crisitem.journal.issn1098-0121-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Achatz260309convertedbyprb.pdfNon Peer-reviewed author version419.31 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.