Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9825
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAchatz, P.-
dc.contributor.authorGajewski, W.-
dc.contributor.authorBustarret, E.-
dc.contributor.authorMarcenat, C.-
dc.contributor.authorPiquerel, R.-
dc.contributor.authorChapelier, C.-
dc.contributor.authorDubouchet, T.-
dc.contributor.authorWILLIAMS, Oliver-
dc.contributor.authorHAENEN, Ken-
dc.contributor.authorGarrido, J. A.-
dc.contributor.authorStutzmann, M.-
dc.date.accessioned2009-08-19T13:19:26Z-
dc.date.issued2009-
dc.identifier.citationPHYSICAL REVIEW B, 79(20)-
dc.identifier.issn1098-0121-
dc.identifier.urihttp://hdl.handle.net/1942/9825-
dc.description.abstractWe studied the transport properties of highly boron-doped nanocrystalline diamond thin films at temperatures down to 50 mK. The system undergoes a doping-induced metal-insulator transition with an interplay between intergranular conductance g and intragranular conductance g(0), as expected for a granular system. The conduction mechanism in the case of the low-conductivity films close to the metal-insulator transition has a temperature dependence similar to Efros-Shklovskii type of hopping. On the metallic side of the transition, in the normal state, a logarithmic temperature dependence of the conductivity is observed, as expected for a metallic granular system. Metallic samples far away from the transition show similarities to heavily boron-doped single-crystal diamond. Close to the transition, the behavior is richer. Global phase coherence leads in both cases to superconductivity (also checked by ac susceptibility), but a peak in the low-temperature magnetoresistance measurements occurs for samples close to the transition. Corrections to the conductance according to superconducting fluctuations account for this negative magnetoresistance.-
dc.format.extent429370 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherAMER PHYSICAL SOC-
dc.subject.otherboron; diamond; electric admittance; fluctuations in superconductors; magnetoresistance; metal-insulator transition; nanostructured materials; optical susceptibility; thin films-
dc.titleLow-temperature transport in highly boron-doped nanocrystalline diamond-
dc.typeJournal Contribution-
dc.identifier.issue20-
dc.identifier.volume79-
local.format.pages4-
local.bibliographicCitation.jcatA1-
dc.description.notes[Achatz, P.; Gajewski, W.; Garrido, J. A.; Stutzmann, M.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. [Achatz, P.; Bustarret, E.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Achatz, P.; Bustarret, E.] Univ Grenoble 1, F-38042 Grenoble 9, France. [Achatz, P.; Marcenat, C.; Piquerel, R.; Chapelier, C.; Dubouchet, T.] LaTEQS, CEA, INAC, SPSMS, F-38054 Grenoble 9, France. [Williams, O. A.; Haenen, K.] Univ Hasselt, Inst Mat Res, B-3590 Diepenbeek, Belgium. [Williams, O. A.; Haenen, K.] IMEC VZW, Div IMOMEC, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1103/PhysRevB.79.201203-
dc.identifier.isi000266501500009-
item.validationecoom 2010-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationAchatz, P.; Gajewski, W.; Bustarret, E.; Marcenat, C.; Piquerel, R.; Chapelier, C.; Dubouchet, T.; WILLIAMS, Oliver; HAENEN, Ken; Garrido, J. A. & Stutzmann, M. (2009) Low-temperature transport in highly boron-doped nanocrystalline diamond. In: PHYSICAL REVIEW B, 79(20).-
item.contributorBustarret, E.-
item.contributorDubouchet, T.-
item.contributorPiquerel, R.-
item.contributorWILLIAMS, Oliver-
item.contributorHAENEN, Ken-
item.contributorGajewski, W.-
item.contributorChapelier, C.-
item.contributorStutzmann, M.-
item.contributorMarcenat, C.-
item.contributorGarrido, J. A.-
item.contributorAchatz, P.-
crisitem.journal.issn1098-0121-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Achatz260309convertedbyprb.pdfPreprint419.31 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

27
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

39
checked on Jun 29, 2022

Page view(s)

52
checked on Jul 5, 2022

Download(s)

94
checked on Jul 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.