Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/985
Title: Learning (k,l)-Contextual Tree Languages for Information Extraction
Authors: Raeymaekers, S.
Bruynooghe, M.
VAN DEN BUSSCHE, Jan 
Issue Date: 2005
Publisher: Springer
Source: Machine Learning: ECML 2005. p. 305-316
Series/Report: Lecture Notes in Computer Science
Series/Report no.: 3720
Abstract: This paper introduces a novel method for learning a wrapper for extraction of text nodes from web pages based upon (k,l)-contextual tree languages. It also introduces a method to learn good values of k and l based on a few positive and negative examples. Finally, it describes how the algorithm can be integrated in a tool for information extraction.
Document URI: http://hdl.handle.net/1942/985
ISBN: 3-540-29243-8
ISSN: 0302-9743
DOI: 10.1007/11564096_31
ISI #: 000233235200031
Category: A1
Type: Journal Contribution
Validations: ecoom 2006
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

11
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

5
checked on May 13, 2022

Page view(s)

40
checked on May 18, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.