Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9856
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOLANES LOPEZ, Elisa Maria-
dc.contributor.authorVAN KEILEGOM, Ingrid-
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2009-09-08T10:40:47Z-
dc.date.available2009-09-08T10:40:47Z-
dc.date.issued2009-
dc.identifier.citationSCANDINAVIAN JOURNAL OF STATISTICS, 36(3). p. 413-432-
dc.identifier.issn0303-6898-
dc.identifier.urihttp://hdl.handle.net/1942/9856-
dc.description.abstractSuppose that X-1,..., X-n is a sequence of independent random vectors, identically distributed as a d-dimensional random vector X. Let mu is an element of R-p be a parameter of interest and nu is an element of R-q be some nuisance parameter. The unknown, true parameters (mu(0), nu(0)) are uniquely determined by the system of equations E{g(X, mu(0), nu(0))} = 0, where g = (g(1),..., g(p+q)) is a vector of p+q functions. In this paper we develop an empirical likelihood (EL) method to do inference for the parameter mu(0). The results in this paper are valid under very mild conditions on the vector of criterion functions g. In particular, we do not require that g(1),..., g(p+q) are smooth in mu or nu. This offers the advantage that the criterion function may involve indicators, which are encountered when considering, e. g. differences of quantiles, copulas, ROC curves, to mention just a few examples. We prove the asymptotic limit of the empirical log-likelihood ratio, and carry out a small simulation study to test the performance of the proposed EL method for small samples.-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL PUBLISHING, INC-
dc.subject.otherconfidence region; copulas; empirical likelihood; estimating equations; hypothesis testing; nuisance parameter; quantiles; ROC curve-
dc.titleEmpirical Likelihood for Non-Smooth Criterion Functions-
dc.typeJournal Contribution-
dc.identifier.epage432-
dc.identifier.issue3-
dc.identifier.spage413-
dc.identifier.volume36-
local.format.pages20-
local.bibliographicCitation.jcatA1-
dc.description.notes[Van Keilegom, Ingrid] Univ Catholique Louvain, Inst Stat, B-1348 Louvain, Belgium. [Molanes Lopez, Elisa M.] Univ Carlos III Madrid, Dept Estadist, E-28903 Getafe, Spain. [Veraverbeke, Noel] Univ Hasselt, Ctr Stat, Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1111/j.1467-9469.2009.00640.x-
dc.identifier.isi000268988600003-
item.fulltextWith Fulltext-
item.contributorMOLANES LOPEZ, Elisa Maria-
item.contributorVAN KEILEGOM, Ingrid-
item.contributorVERAVERBEKE, Noel-
item.fullcitationMOLANES LOPEZ, Elisa Maria; VAN KEILEGOM, Ingrid & VERAVERBEKE, Noel (2009) Empirical Likelihood for Non-Smooth Criterion Functions. In: SCANDINAVIAN JOURNAL OF STATISTICS, 36(3). p. 413-432.-
item.accessRightsOpen Access-
item.validationecoom 2010-
crisitem.journal.issn0303-6898-
crisitem.journal.eissn1467-9469-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
handle-new1.pdfPublished version769.38 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.