Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/989
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTUYLS, Karl-
dc.contributor.authorCroonenborghs, T.-
dc.contributor.authorRamon, J.-
dc.contributor.authorGoetschalckx, R.-
dc.contributor.authorBruynooghe, M.-
dc.date.accessioned2006-07-25T09:27:24Z-
dc.date.available2006-07-25T09:27:24Z-
dc.date.issued2005-
dc.identifier.citationADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS. p. 275-294-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/989-
dc.description.abstractIn this paper we study Relational Reinforcement Learning in a multi-agent setting. There is growing evidence in the Reinforcement Learning research community that a relational representation of the state space has many bene ts over a propositional one. Complex tasks as planning or information retrieval on the web can be represented more naturally in relational form. Yet, this relational structure has not been exploited for multi-agent reinforcement learning tasks and has only been studied in a single agent context so far. This paper is a rst attempt in bridging the gap between Relation Reinforcement Learning (RRL) and Multi-agent Systems (MAS). More precisely, we will explore how a relational structure of the state space can be used in a Multi-Agent Reinforcement Learning context.-
dc.format.extent347228 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherSpringer-
dc.relation.ispartofseriesLECTURE NOTES IN COMPUTER SCIENCE-
dc.titleMulti-agent relational reinforcement learning-
dc.typeJournal Contribution-
local.bibliographicCitation.conferencenameADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS-
dc.identifier.epage294-
dc.identifier.spage275-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.relation.ispartofseriesnr3394-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000228996700018-
item.fulltextWith Fulltext-
item.contributorTUYLS, Karl-
item.contributorCroonenborghs, T.-
item.contributorRamon, J.-
item.contributorGoetschalckx, R.-
item.contributorBruynooghe, M.-
item.fullcitationTUYLS, Karl; Croonenborghs, T.; Ramon, J.; Goetschalckx, R. & Bruynooghe, M. (2005) Multi-agent relational reinforcement learning. In: ADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS. p. 275-294.-
item.accessRightsOpen Access-
crisitem.journal.issn0302-9743-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
multi_agent.pdfPublished version339.09 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.