Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJANSEN, Ivy-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2011-01-03T18:24:48Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2011-01-03T18:24:48Z-
dc.date.issued2010-
dc.identifier.citationJOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 80 (11). p. 1279-1296-
dc.identifier.issn0094-9655-
dc.identifier.urihttp://hdl.handle.net/1942/11408-
dc.description.abstractAlthough most models for incomplete longitudinal data are formulated within the selection model framework, pattern-mixture models have gained considerable interest in recent years [R.J.A. Little, Pattern-mixture models for multivariate incomplete data, J. Am. Stat. Assoc. 88 (1993), pp. 125-134; R.J.A. Lrittle, A class of pattern-mixture models for normal incomplete data, Biometrika 81 (1994), pp. 471-483], since it is often argued that selection models, although many are identifiable, should be approached with caution, especially in the context of MNAR models [R.J. Glynn, N.M. Laird, and D.B. Rubin, Selection modeling versus mixture modeling with nonignorable nonresponse, in Drawing Inferences from Self-selected Samples, H. Wainer, ed., Springer-Verlag, New York, 1986, pp. 115-142]. In this paper, the focus is on several strategies to fit pattern-mixture models for non-monotone categorical outcomes. The issue of under-identification in pattern-mixture models is addressed through identifying restrictions. Attention will be given to the derivation of the marginal covariate effect in pattern-mixture models for non-monotone categorical data, which is less straightforward than in the case of linear models for continuous data. The techniques developed will be used to analyse data from a clinical study in psychiatry.-
dc.description.sponsorshipIvy Jansen and Geert Molenberghs gratefully acknowledge the support from Fonds Wetenschappelijk Onderzoek-Vlaanderen Research Project G.0002.98 'Sensitivity Analysis for Incomplete and Coarse Data' and from IAP research Network P6/03 of the Belgian Government (Belgian Science Policy).-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS LTD-
dc.rights© 2010 Taylor & Francis-
dc.subject.othercategorical data; identifying restrictions; multivariate Dale model; non-monotone missingness; pattern-mixture models-
dc.subject.othercategorical data; identifying restrictions; multivariate Dale model; non-monotone missingness; pattern-mixture models-
dc.titlePattern-mixture models for categorical outcomes with non-monotone missingness-
dc.typeJournal Contribution-
dc.identifier.epage1296-
dc.identifier.issue11-
dc.identifier.spage1279-
dc.identifier.volume80-
local.format.pages18-
local.bibliographicCitation.jcatA1-
dc.description.notesMolenberghs, G (reprint author) [Jansen, Ivy; Molenberghs, Geert] Hasselt Univ, Ctr Stat, B-3590 Diepenbeek, Belgium. geert.molenberghs@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1080/00949650903062566-
dc.identifier.isi000283061500008-
item.fulltextWith Fulltext-
item.contributorJANSEN, Ivy-
item.contributorMOLENBERGHS, Geert-
item.fullcitationJANSEN, Ivy & MOLENBERGHS, Geert (2010) Pattern-mixture models for categorical outcomes with non-monotone missingness. In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 80 (11). p. 1279-1296.-
item.accessRightsOpen Access-
item.validationecoom 2011-
crisitem.journal.issn0094-9655-
crisitem.journal.eissn1563-5163-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
pmm_ivy5[1].pdfPeer-reviewed author version234.13 kBAdobe PDFView/Open
jansen2010.pdf
  Restricted Access
Published version241.28 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.