Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11439
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCalaque, Damien-
dc.contributor.authorRossi, Carlo A.-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2011-01-06T17:39:44Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2011-01-06T17:39:44Z-
dc.date.issued2010-
dc.identifier.citationINTERNATIONAL MATHEMATICS RESEARCH NOTICES, (21). p. 4098-4136-
dc.identifier.issn1073-7928-
dc.identifier.urihttp://hdl.handle.net/1942/11439-
dc.description.abstractWe define the Hochschild (co)homology of a ringed space relative to a locally free Lie algebroid. Our definitions mimic those of Swan and Caldararu for an algebraic variety. We show that our (co)homology groups can be computed using suitable standard complexes. Our formulas depend on certain natural structures on jet bundles over Lie algebroids. In an appendix, we explain this by showing that such jet bundles are formal groupoids which serve as the formal exponentiation of the Lie algebroid.-
dc.format.extent269067 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherOXFORD UNIV PRESS-
dc.titleHochschild (Co)homology for Lie Algebroids-
dc.typeJournal Contribution-
dc.identifier.epage4136-
dc.identifier.issue21-
dc.identifier.spage4098-
local.format.pages39-
local.bibliographicCitation.jcatA1-
dc.description.notes[Calaque, Damien] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France. [Rossi, Carlo A.] ETH, Dept Math, CH-8092 Zurich, Switzerland. [van den Bergh, Michel] Hasselt Univ, Dept WNI, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1093/imrn/rnq033-
dc.identifier.isi000283682600005-
item.fulltextWith Fulltext-
item.contributorCalaque, Damien-
item.contributorRossi, Carlo A.-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationCalaque, Damien; Rossi, Carlo A. & VAN DEN BERGH, Michel (2010) Hochschild (Co)homology for Lie Algebroids. In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES, (21). p. 4098-4136.-
item.accessRightsClosed Access-
item.validationecoom 2011-
crisitem.journal.issn1073-7928-
crisitem.journal.eissn1687-0247-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
0908.2630v3.pdf262.76 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.