Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11484
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2011-01-09T17:25:51Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2011-01-09T17:25:51Z-
dc.date.issued2010-
dc.identifier.citationSTATISTICAL MODELLING, 10 (4). p. 391-419-
dc.identifier.issn1471-082X-
dc.identifier.urihttp://hdl.handle.net/1942/11484-
dc.description.abstractStatistical models often extend beyond the data available. First, in coarse data, what is actually observed is less detailed than what might be, owing to incompleteness, censoring, grouping, or a combination thereof. Second, in augmented data, the observed data are hypothetically supplemented with random effects, latent variables/classes, or component membership in mixture distributions. The two settings together will be referred to as enriched data. Reasons for modelling enriched data encompass mathematical and computational convenience, advantages in interpretation, and substantive plausibility. Models for enriched data combine evidence coming from empirical data with unverifiable model components, resting entirely on assumptions. This has acute consequences for enriched data, but knowledge about this issue is somewhat scattered. We provide a unified framework for enriched data and show, generally and with focus on incomplete-data models and random-effects models on the other hand, that to any given model an entire class of models can be assigned, with all of its members producing the same fit to the observed data but arbitrary regarding the unobservable parts of the enriched data. The concepts developed are illustrated using a clinical trial in toenail dermatophyte onychomycosis and a developmental toxicity study conducted in mice.-
dc.description.sponsorshipThe authors gratefully acknowledge support from IAP Research Network P6/03 of the Belgian Government (Belgian Science Policy).-
dc.language.isoen-
dc.publisherSAGE PUBLICATIONS LTD-
dc.rights(c) 2010 SAGE Publications-
dc.subject.otherenriched data; exponential random effects; gamma random effects; missing data model; linear mixed model-
dc.subject.otherenriched data; exponential random effects; gamma random effects; missing data model; linear mixed model-
dc.titleArbitrariness of models for augmented and coarse data, with emphasis on incomplete data and random effects models-
dc.typeJournal Contribution-
dc.identifier.epage419-
dc.identifier.issue4-
dc.identifier.spage391-
dc.identifier.volume10-
local.format.pages29-
local.bibliographicCitation.jcatA1-
dc.description.notesMolenberghs, G (reprint author) [Verbeke, Geert; Molenberghs, Geert] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat, B-3590 Diepenbeek, Belgium. [Verbeke, Geert; Molenberghs, Geert] Katholieke Univ Leuven, Interuniv Inst Biostat & Stat Bioinformat, B-3590 Diepenbeek, Belgium. geert.molenberghs@uhasselt.be geert.molenberghs@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1177/1471082X0901000403-
dc.identifier.isi000284229600003-
item.validationecoom 2011-
item.contributorVERBEKE, Geert-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationVERBEKE, Geert & MOLENBERGHS, Geert (2010) Arbitrariness of models for augmented and coarse data, with emphasis on incomplete data and random effects models. In: STATISTICAL MODELLING, 10 (4). p. 391-419.-
crisitem.journal.issn1471-082X-
crisitem.journal.eissn1477-0342-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
reff07[1].pdfPeer-reviewed author version450.14 kBAdobe PDFView/Open
verbeke2010.pdf
  Restricted Access
Published version414.18 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.