Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/11635Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | BONCKAERT, Patrick | - |
| dc.contributor.author | DE MAESSCHALCK, Peter | - |
| dc.contributor.author | DUMORTIER, Freddy | - |
| dc.date.accessioned | 2011-02-24T14:03:29Z | - |
| dc.date.available | NO_RESTRICTION | - |
| dc.date.available | 2011-02-24T14:03:29Z | - |
| dc.date.issued | 2011 | - |
| dc.identifier.citation | Journal of Dynamics and Differential Equations, 23(1). p. 115-139 | - |
| dc.identifier.issn | 1040-7294 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/11635 | - |
| dc.description.abstract | We provide smooth local normal forms near singularities that appear in planar singular perturbation problems after application of the well-known family blow up technique. The local normal forms preserve the structure that is provided by the blow-up ransformation. In a similar context, C^k-structure-preserving normal forms were shown to exist, for any finite k. In this paper, we improve the smoothness by showing the existence of a C^\infty normalizing transformation, or in other cases by showing the existence of a single normalizing transformation that is C^k for each k, provided one restricts the singular parameter epsilon to a (k-dependent) suffiiently small neighborhood of the origin. | - |
| dc.description.sponsorship | The second author is sponsored by the FWO | - |
| dc.language.iso | en | - |
| dc.publisher | Springer | - |
| dc.subject.other | smooth normal linearization, vector field, line of singularities, singular perturbations | - |
| dc.title | Well adapted normal linearization in singular perturbation problems | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 139 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | 115 | - |
| dc.identifier.volume | 23 | - |
| local.bibliographicCitation.jcat | A1 | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.bibliographicCitation.oldjcat | A1 | - |
| dc.identifier.doi | 10.1007/s10884-010-9191-0 | - |
| dc.identifier.isi | 000290757300005 | - |
| item.contributor | BONCKAERT, Patrick | - |
| item.contributor | DE MAESSCHALCK, Peter | - |
| item.contributor | DUMORTIER, Freddy | - |
| item.validation | ecoom 2012 | - |
| item.fulltext | With Fulltext | - |
| item.accessRights | Closed Access | - |
| item.fullcitation | BONCKAERT, Patrick; DE MAESSCHALCK, Peter & DUMORTIER, Freddy (2011) Well adapted normal linearization in singular perturbation problems. In: Journal of Dynamics and Differential Equations, 23(1). p. 115-139. | - |
| crisitem.journal.issn | 1040-7294 | - |
| crisitem.journal.eissn | 1572-9222 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| jdde1332-normalforms-revision.pdf | Non Peer-reviewed author version | 408.25 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
5
checked on Dec 1, 2025
WEB OF SCIENCETM
Citations
3
checked on Dec 4, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.