Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11635
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBONCKAERT, Patrick-
dc.contributor.authorDE MAESSCHALCK, Peter-
dc.contributor.authorDUMORTIER, Freddy-
dc.date.accessioned2011-02-24T14:03:29Z-
dc.date.availableNO_RESTRICTION-
dc.date.available2011-02-24T14:03:29Z-
dc.date.issued2011-
dc.identifier.citationJournal of Dynamics and Differential Equations, 23(1). p. 115-139-
dc.identifier.issn1040-7294-
dc.identifier.urihttp://hdl.handle.net/1942/11635-
dc.description.abstractWe provide smooth local normal forms near singularities that appear in planar singular perturbation problems after application of the well-known family blow up technique. The local normal forms preserve the structure that is provided by the blow-up ransformation. In a similar context, C^k-structure-preserving normal forms were shown to exist, for any finite k. In this paper, we improve the smoothness by showing the existence of a C^\infty normalizing transformation, or in other cases by showing the existence of a single normalizing transformation that is C^k for each k, provided one restricts the singular parameter epsilon to a (k-dependent) suffiiently small neighborhood of the origin.-
dc.description.sponsorshipThe second author is sponsored by the FWO-
dc.language.isoen-
dc.publisherSpringer-
dc.subject.othersmooth normal linearization, vector field, line of singularities, singular perturbations-
dc.titleWell adapted normal linearization in singular perturbation problems-
dc.typeJournal Contribution-
dc.identifier.epage139-
dc.identifier.issue1-
dc.identifier.spage115-
dc.identifier.volume23-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/s10884-010-9191-0-
dc.identifier.isi000290757300005-
item.contributorBONCKAERT, Patrick-
item.contributorDE MAESSCHALCK, Peter-
item.contributorDUMORTIER, Freddy-
item.fullcitationBONCKAERT, Patrick; DE MAESSCHALCK, Peter & DUMORTIER, Freddy (2011) Well adapted normal linearization in singular perturbation problems. In: Journal of Dynamics and Differential Equations, 23(1). p. 115-139.-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.validationecoom 2012-
crisitem.journal.issn1040-7294-
crisitem.journal.eissn1572-9222-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
jdde1332-normalforms-revision.pdfNon Peer-reviewed author version408.25 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.