Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorANCUTI, Codruta-
dc.contributor.authorANCUTI, Cosmin-
dc.contributor.authorHERMANS, Chris-
dc.contributor.authorBEKAERT, Philippe-
dc.date.accessioned2011-02-25T10:51:47Z-
dc.date.availableNO_RESTRICTION-
dc.date.issued2011-
dc.identifier.citationCOMPUTER VISION - ACCV 2010, Pt II.p. 501-514-
dc.identifier.isbn978-3-642-19314-9-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/11702-
dc.description.abstractIn this paper we introduce a novel approach to restore a single image degraded by atmospheric phenomena such as fog or haze. The presented algorithm allows for fast identification of hazy regions of an image, without making use of expensive optimization and refinement procedures. By applying a single per pixel operation on the original image, we produce a 'semi-inverse' of the image. Based on the hue disparity between the original image and its semi-inverse, we are then able to identify hazy regions on a per pixel basis. This enables for a simple estimation of the airlight constant and the transmission map. Our approach is based on an extensive study on a large data set of images, and validated based on a metric that measures the contrast but also the structural changes. The algorithm is straightforward and performs faster than existing strategies while yielding comparative and even better results. We also provide a comparative evaluation against other recent single image dehazing methods, demonstrating the efficiency and utility of our approach-
dc.language.isoen-
dc.publisherSpringer Verlag-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.subject.otherComputer Science, Theory & Methods-
dc.titleA Fast Semi-Inverse Approach to Detect and Remove the Haze from a Single Image-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateNovember 08-12, 2010-
local.bibliographicCitation.conferencename10th Asian Conference on Computer Vision-
local.bibliographicCitation.conferenceplaceQueenstown, New Zealand-
dc.identifier.epage514-
dc.identifier.spage501-
local.bibliographicCitation.jcatC1-
dc.description.notesReprint Address: Ancuti, CO (reprint author), Hasselt Univ tUL IBBT, Expertise Ctr Digital Media, Wetenschapspark 2, B-3590 Diepenbeek, Belgium Addresses: Hasselt Univ tUL IBBT, Expertise Ctr Digital Media, B-3590 Diepenbeek, Belgium-
local.publisher.placeBerlin, Germany-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr6493-
dc.bibliographicCitation.oldjcatC1-
dc.identifier.isi000295546500039-
local.bibliographicCitation.btitleCOMPUTER VISION - ACCV 2010, Pt II-
item.fullcitationANCUTI, Codruta; ANCUTI, Cosmin; HERMANS, Chris & BEKAERT, Philippe (2011) A Fast Semi-Inverse Approach to Detect and Remove the Haze from a Single Image. In: COMPUTER VISION - ACCV 2010, Pt II.p. 501-514.-
item.accessRightsClosed Access-
item.validationecoom 2012-
item.fulltextWith Fulltext-
item.contributorANCUTI, Codruta-
item.contributorANCUTI, Cosmin-
item.contributorHERMANS, Chris-
item.contributorBEKAERT, Philippe-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
FINAL_ACCV_Dehazing.pdfNon Peer-reviewed author version5.42 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

70
checked on Aug 20, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.