Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/11743
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | DE MAESSCHALCK, Peter | - |
dc.contributor.author | DUMORTIER, Freddy | - |
dc.date.accessioned | 2011-03-03T08:42:54Z | - |
dc.date.available | NO_RESTRICTION | - |
dc.date.available | 2011-03-03T08:42:54Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | JOURNAL OF DIFFERENTIAL EQUATIONS, 250(4). p. 2162-2176 | - |
dc.identifier.issn | 0022-0396 | - |
dc.identifier.uri | http://hdl.handle.net/1942/11743 | - |
dc.description.abstract | Based on geometric singular perturbation theory we prove the existence of classical Lienard equations of degree 6 having 4 limit cycles. It implies the existence of classical Lienard equations of degree n >= 6, having at least [n-1/2] + 2 limit cycles. This contradicts the conjecture from Lins, de Melo and Pugh formulated in 1976, where an upperbound of [n-1/2] limit cycles was predicted. This paper improves the counterexample from Dumortier, Panazzolo and Roussarie (2007) by supplying one additional limit cycle from degree 7 on, and by finding a counterexample of degree 6. We also give a precise system of degree 6 for which we provide strong numerical evidence that it has at least 3 limit cycles. (c) 2010 Elsevier Inc. All rights reserved. | - |
dc.language.iso | en | - |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | - |
dc.rights | Elsevier Science | - |
dc.subject.other | Slow–fast system; Singular perturbations; Limit cycles; Relaxation oscillation; Classical Liénard equations | - |
dc.subject.other | Slow-fast system; Singular perturbations; Limit cycles; Relaxation oscillation; Classical Lienard equations | - |
dc.title | Classical Lienard equations of degree n >= 6 can have [n-1/2]+2 limit cycles | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 2176 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 2162 | - |
dc.identifier.volume | 250 | - |
local.format.pages | 15 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [De Maesschalck, P.; Dumortier, F.] Hasselt Univ, B-3590 Diepenbeek, Belgium. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1016/j.jde.2010.12.003 | - |
dc.identifier.isi | 000286447000014 | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2012 | - |
item.contributor | DE MAESSCHALCK, Peter | - |
item.contributor | DUMORTIER, Freddy | - |
item.fullcitation | DE MAESSCHALCK, Peter & DUMORTIER, Freddy (2011) Classical Lienard equations of degree n >= 6 can have [n-1/2]+2 limit cycles. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 250(4). p. 2162-2176. | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 0022-0396 | - |
crisitem.journal.eissn | 1090-2732 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
morelc-jde-final.pdf | Peer-reviewed author version | 354.6 kB | Adobe PDF | View/Open |
peter 1.pdf Restricted Access | 224.28 kB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
69
checked on Sep 7, 2025
WEB OF SCIENCETM
Citations
54
checked on Sep 10, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.