Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/12115
Title: A business process mining application for internal transaction fraud mitigation
Authors: JANS, Mieke 
van der Werf, Jan Martijn
LYBAERT, Nadine 
VANHOOF, Koen 
Issue Date: 2011
Publisher: PERGAMON-ELSEVIER SCIENCE LTD
Source: EXPERT SYSTEMS WITH APPLICATIONS, 38(10). p. 13351-13359
Abstract: Corporate fraud these days represents a huge cost to our economy. In the paper we address one specific type of corporate fraud, internal transaction fraud. Given the omnipresence of stored history logs, the field of process mining rises as an adequate answer to mitigating internal transaction fraud. Process mining diagnoses processes by mining event logs. This way we can expose opportunities to commit fraud in the followed process. In this paper we report on an application of process mining at a case company. The procurement process was selected as example for internal transaction fraud mitigation. The results confirm the contribution process mining can provide to business practice. (C) 2011 Elsevier Ltd. All rights reserved.
Notes: [Jans, M; Lybaert, N; Vanhoof, K] Hasselt Univ, Fac Business Econ, B-3590 Diepenbeek, Belgium [van der Werf, JM] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands mieke.jans@uhasselt.be; j.m.e.m.v.d.werf@tue.nl; nadine.lybaert@uhasselt.be; koen.vanhoof@uhas-selt.be
Keywords: Internal fraud; Transaction fraud; Process mining
Document URI: http://hdl.handle.net/1942/12115
ISSN: 0957-4174
e-ISSN: 1873-6793
DOI: 10.1016/j.eswa.2011.04.159
ISI #: 000292169500147
Category: A1
Type: Journal Contribution
Validations: ecoom 2012
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
jans 1.pdf
  Restricted Access
published version533.56 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

79
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

71
checked on May 21, 2022

Page view(s)

136
checked on May 27, 2022

Download(s)

124
checked on May 27, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.