Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/12928
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPoleto, Frederico Z.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorPaulino, Carlos Daniel-
dc.contributor.authorSinger, Julio M.-
dc.date.accessioned2012-01-12T07:41:23Z-
dc.date.available2012-01-12T07:41:23Z-
dc.date.issued2011-
dc.identifier.citationTEST, 20(3), p. 589-606-
dc.identifier.issn1133-0686-
dc.identifier.urihttp://hdl.handle.net/1942/12928-
dc.description.abstractModels for missing data are necessarily based on untestable assumptions whose effect on the conclusions are usually assessed via sensitivity analysis. To avoid the usual normality assumption and/or hard-to-interpret sensitivity parameters proposed by many authors for such purposes, we consider a simple approach for estimating means, standard deviations and correlations. We do not make distributional assumptions and adopt a pattern-mixture model parameterization which has easily interpreted sensitivity parameters. We use the so-called estimated ignorance and uncertainty intervals to summarize the results and illustrate the proposal with a practical example. We present results for both the univariate and the multivariate cases.-
dc.description.sponsorshipThe authors would like to thank the following institutions for financial support: Frederico Z. Poleto and Julio M. Singer, from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil, and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Geert Molenberghs, from the IAP research Network P6/03 of the Belgian Government (Belgian Science Policy); Carlos Daniel Paulino, from Fundacao para a Ciencia e Tecnologia (FCT) through the research centre CEAUL-FCUL, Portugal.-
dc.language.isoen-
dc.publisherSPRINGER-
dc.rights© Sociedad de Estadística e Investigación Operativa 2010-
dc.subject.otherIdentifiability; Ignorance interval; Missing data; Pattern-mixture model; Uncertainty interval-
dc.subject.otheridentifiability; ignorance interval; missing data; pattern-mixture model; uncertainty interval-
dc.titleSensitivity analysis for incomplete continuous data-
dc.typeJournal Contribution-
dc.identifier.epage606-
dc.identifier.issue3-
dc.identifier.spage589-
dc.identifier.volume20-
local.format.pages18-
local.bibliographicCitation.jcatA1-
dc.description.notes[Poleto, Frederico Z.; Singer, Julio M.] Univ Sao Paulo, Inst Matemat & Estatist, BR-05314970 Sao Paulo, Brazil. [Molenberghs, Geert] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium. [Molenberghs, Geert] Katholieke Univ Leuven, B-3000 Louvain, Belgium. [Paulino, Carlos Daniel] Univ Tecn Lisbon, Inst Super Tecn, P-1049001 Lisbon, Portugal. [Paulino, Carlos Daniel] CEAUL FCUL, P-1049001 Lisbon, Portugal. fpoleto@ime.usp.br; geert.molenberghs@uhasselt.be; dpaulino@math.ist.utl.pt; jmsinger@ime.usp.br-
local.publisher.placeNEW YORK-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/s11749-010-0219-x-
dc.identifier.isi000297125000012-
dc.identifier.urlhttps://www.researchgate.net/publication/225566053_Sensitivity_analysis_for_incomplete_continuous_data-
item.validationecoom 2012-
item.contributorPoleto, Frederico Z.-
item.contributorMOLENBERGHS, Geert-
item.contributorPaulino, Carlos Daniel-
item.contributorSinger, Julio M.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationPoleto, Frederico Z.; MOLENBERGHS, Geert; Paulino, Carlos Daniel & Singer, Julio M. (2011) Sensitivity analysis for incomplete continuous data. In: TEST, 20(3), p. 589-606.-
crisitem.journal.issn1133-0686-
crisitem.journal.eissn1863-8260-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
a.pdf
  Restricted Access
Published version612.17 kBAdobe PDFView/Open    Request a copy
PoletoMolenberghsPaulinoSinger2010Submitted.pdfPeer-reviewed author version315.52 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.