Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13256
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHeintz, Joos-
dc.contributor.authorKUIJPERS, Bart-
dc.contributor.authorRojas Paredes, Andrés-
dc.date.accessioned2012-02-29T08:40:15Z-
dc.date.available2012-02-29T08:40:15Z-
dc.date.issued2011-
dc.identifier.urihttp://hdl.handle.net/1942/13256-
dc.description.abstractWe introduce the notion of a robust parameterized arithmetic circuit for the evaluation of algebraic families of multivariate polynomials. Based on this notion, we present a computation model, adapted to Scientific Computing, which captures all known branching parsimonious symbolic algorithms in effective Algebraic Geometry. We justify this model by arguments from Software Engineering. Finally we exhibit a class of simple elimination problems of effective Algebraic Geometry which require exponential time to be solved by branching parsimonious algorithms of our computation model.-
dc.language.isoen-
dc.subject.otherSoftware engineering; Effective Algebraic Geometry-
dc.titleSoftware Engineering and Complexity in Effective Algebraic Geometry-
dc.typePreprint-
local.format.pages65-
local.bibliographicCitation.jcatO-
local.type.specifiedPreprint-
dc.identifier.urlhttp://arxiv.org/abs/1110.3030-
item.fulltextWith Fulltext-
item.contributorHeintz, Joos-
item.contributorKUIJPERS, Bart-
item.contributorRojas Paredes, Andrés-
item.fullcitationHeintz, Joos; KUIJPERS, Bart & Rojas Paredes, Andrés (2011) Software Engineering and Complexity in Effective Algebraic Geometry.-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1110.3030v2.pdfNon Peer-reviewed author version623.05 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.