Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/1346
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | OOMS, Alfons | - |
dc.date.accessioned | 2007-04-02T12:05:46Z | - |
dc.date.available | 2007-04-02T12:05:46Z | - |
dc.date.issued | 2006 | - |
dc.identifier.citation | JOURNAL OF ALGEBRA, 305(2). p. 901-911 | - |
dc.identifier.uri | http://hdl.handle.net/1942/1346 | - |
dc.description.abstract | Let g be an n-dimensional Lie algebra over a field k of characteristic zero and let W be a g-module of dimension at least n. Sufficient conditions are given in order for the semi-direct product g + W to satisfy the Gelfand-Kirillov conjecture. This implies that this conjecture holds for an important class of Frobenius Lie algebras. Special attention is devoted to the case where g = sl(2,k). | - |
dc.format.extent | 159130 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | Elsevier | - |
dc.title | The Gelfand-Kirillov conjecture for semi-direct products of Lie algebras | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 911 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 901 | - |
dc.identifier.volume | 305 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1016/j.jalgebra.2006.03.009 | - |
dc.identifier.isi | 000245638800015 | - |
item.validation | ecoom 2008 | - |
item.contributor | OOMS, Alfons | - |
item.fullcitation | OOMS, Alfons (2006) The Gelfand-Kirillov conjecture for semi-direct products of Lie algebras. In: JOURNAL OF ALGEBRA, 305(2). p. 901-911. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TheGelfandKirillovConjecture._2.pdf | Published version | 155.4 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.