Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/13798
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MILANZI, Elasma | - |
dc.contributor.author | ALONSO ABAD, Ariel | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.date.accessioned | 2012-07-16T13:33:31Z | - |
dc.date.available | 2012-07-16T13:33:31Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | STATISTICS IN MEDICINE, 31 (14), p. 1475-1482 | - |
dc.identifier.issn | 0277-6715 | - |
dc.identifier.uri | http://hdl.handle.net/1942/13798 | - |
dc.description.abstract | Poisson data frequently exhibit overdispersion; and, for univariate models, many options exist to circumvent this problem. Nonetheless, in complex scenarios, for example, in longitudinal studies, accounting for overdispersion is a more challenging task. Recently, Molenberghs et.al, presented a model that accounts for overdispersion by combining two sets of random effects. However, introducing a new set of random effects implies additional distributional assumptions for intrinsically unobservable variables, which has not been considered before. Using the combined model as a framework, we explored the impact of ignoring overdispersion in complex longitudinal settings via simulations. Furthermore, we evaluated the effect of misspecifying the random-effects distribution on both the combined model and the classical Poisson hierarchical model. Our results indicate that even though inferences may be affected by ignored overdispersion, the combined model is a promising tool in this scenario. Copyright (C) 2012 John Wiley & Sons, Ltd. | - |
dc.description.sponsorship | IAP research network #P6/03 of the Belgian Government (Belgian Science Policy) | - |
dc.language.iso | en | - |
dc.publisher | WILEY-BLACKWELL | - |
dc.subject.other | Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability; Poisson-normal model; overdispersion; hierarchical; combined model; Type I error | - |
dc.subject.other | Poisson-normal model; overdispersion; hierachical; combined model; Type I error | - |
dc.title | Ignoring overdispersion in hierarchical loglinear models: Possible problems and solutions | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 1482 | - |
dc.identifier.issue | 14 | - |
dc.identifier.spage | 1475 | - |
dc.identifier.volume | 31 | - |
local.format.pages | 8 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Milanzi, Elasma; Molenberghs, Geert] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium. [Alonso, Ariel] Maastricht Univ, Dept Methodol & Stat, Maastricht, Netherlands. [Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium. | - |
local.publisher.place | HOBOKEN | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1002/sim.4482 | - |
dc.identifier.isi | 000304906800006 | - |
item.fulltext | With Fulltext | - |
item.contributor | MILANZI, Elasma | - |
item.contributor | ALONSO ABAD, Ariel | - |
item.contributor | MOLENBERGHS, Geert | - |
item.fullcitation | MILANZI, Elasma; ALONSO ABAD, Ariel & MOLENBERGHS, Geert (2012) Ignoring overdispersion in hierarchical loglinear models: Possible problems and solutions. In: STATISTICS IN MEDICINE, 31 (14), p. 1475-1482. | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2013 | - |
crisitem.journal.issn | 0277-6715 | - |
crisitem.journal.eissn | 1097-0258 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
milanzi1.pdf Restricted Access | Published version | 120.63 kB | Adobe PDF | View/Open Request a copy |
a.pdf | Peer-reviewed author version | 235.23 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.