Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/13798
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMILANZI, Elasma-
dc.contributor.authorALONSO ABAD, Ariel-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2012-07-16T13:33:31Z-
dc.date.available2012-07-16T13:33:31Z-
dc.date.issued2012-
dc.identifier.citationSTATISTICS IN MEDICINE, 31 (14), p. 1475-1482-
dc.identifier.issn0277-6715-
dc.identifier.urihttp://hdl.handle.net/1942/13798-
dc.description.abstractPoisson data frequently exhibit overdispersion; and, for univariate models, many options exist to circumvent this problem. Nonetheless, in complex scenarios, for example, in longitudinal studies, accounting for overdispersion is a more challenging task. Recently, Molenberghs et.al, presented a model that accounts for overdispersion by combining two sets of random effects. However, introducing a new set of random effects implies additional distributional assumptions for intrinsically unobservable variables, which has not been considered before. Using the combined model as a framework, we explored the impact of ignoring overdispersion in complex longitudinal settings via simulations. Furthermore, we evaluated the effect of misspecifying the random-effects distribution on both the combined model and the classical Poisson hierarchical model. Our results indicate that even though inferences may be affected by ignored overdispersion, the combined model is a promising tool in this scenario. Copyright (C) 2012 John Wiley & Sons, Ltd.-
dc.description.sponsorshipIAP research network #P6/03 of the Belgian Government (Belgian Science Policy)-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL-
dc.subject.otherMathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability; Poisson-normal model; overdispersion; hierarchical; combined model; Type I error-
dc.subject.otherPoisson-normal model; overdispersion; hierachical; combined model; Type I error-
dc.titleIgnoring overdispersion in hierarchical loglinear models: Possible problems and solutions-
dc.typeJournal Contribution-
dc.identifier.epage1482-
dc.identifier.issue14-
dc.identifier.spage1475-
dc.identifier.volume31-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notes[Milanzi, Elasma; Molenberghs, Geert] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium. [Alonso, Ariel] Maastricht Univ, Dept Methodol & Stat, Maastricht, Netherlands. [Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1002/sim.4482-
dc.identifier.isi000304906800006-
item.fulltextWith Fulltext-
item.contributorMILANZI, Elasma-
item.contributorALONSO ABAD, Ariel-
item.contributorMOLENBERGHS, Geert-
item.fullcitationMILANZI, Elasma; ALONSO ABAD, Ariel & MOLENBERGHS, Geert (2012) Ignoring overdispersion in hierarchical loglinear models: Possible problems and solutions. In: STATISTICS IN MEDICINE, 31 (14), p. 1475-1482.-
item.accessRightsOpen Access-
item.validationecoom 2013-
crisitem.journal.issn0277-6715-
crisitem.journal.eissn1097-0258-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
milanzi1.pdf
  Restricted Access
Published version120.63 kBAdobe PDFView/Open    Request a copy
a.pdfPeer-reviewed author version235.23 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.