Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/1409
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BOGORNY, Vania | - |
dc.contributor.author | Valiati, J.F. | - |
dc.contributor.author | da Silva Camargo, S | - |
dc.contributor.author | Martins Engel, P | - |
dc.contributor.author | KUIJPERS, Bart | - |
dc.contributor.author | ALVARES, Luis Otavio | - |
dc.date.accessioned | 2007-05-03T09:07:57Z | - |
dc.date.available | 2007-05-03T09:07:57Z | - |
dc.date.issued | 2006 | - |
dc.identifier.citation | Clifton, CW & Zhong, N & Liu, JM & Wah, BW & Wu, XD (Ed.) Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006). p. 813-817. | - |
dc.identifier.isbn | 978-0-7695-2701-7 | - |
dc.identifier.issn | 1550-4786 | - |
dc.identifier.uri | http://hdl.handle.net/1942/1409 | - |
dc.description.abstract | In frequent geographic pattern mining a large amount of patterns is well known a priori. This paper presents a novel approach for mining frequent geographic patterns without associations that are previously known as non-interesting. Geographic dependences are eliminated during the frequent set generation using prior knowledge. After the dependence elimination maximal generalized frequent sets are computed to remove redundant frequent sets. Experimental results show a significant reduction of both the number of frequent sets and the computational time for mining maximal frequent geographic patterns. | - |
dc.format.extent | 808333 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | IEEE | - |
dc.relation.ispartofseries | IEEE International Conference on Data Mining | - |
dc.title | A Mining Maximal Generalized Frequent Geographic Patterns With Knowledge Constraints | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.authors | Clifton, CW | - |
local.bibliographicCitation.authors | Zhong, N | - |
local.bibliographicCitation.authors | Liu, JM | - |
local.bibliographicCitation.authors | Wah, BW | - |
local.bibliographicCitation.authors | Wu, XD | - |
local.bibliographicCitation.conferencedate | 2006 | - |
local.bibliographicCitation.conferencename | Data Mining (ICDM 2006) | - |
dc.bibliographicCitation.conferencenr | 6 | - |
local.bibliographicCitation.conferenceplace | Hong Kong, China | - |
dc.identifier.epage | 817 | - |
dc.identifier.spage | 813 | - |
local.bibliographicCitation.jcat | C1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
dc.bibliographicCitation.oldjcat | C1 | - |
dc.identifier.isi | 000245601900082 | - |
dc.identifier.url | http://doi.ieeecomputersociety.org/10.1109/ICDM.2006.110 | - |
local.bibliographicCitation.btitle | Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006) | - |
item.fulltext | With Fulltext | - |
item.contributor | BOGORNY, Vania | - |
item.contributor | Valiati, J.F. | - |
item.contributor | da Silva Camargo, S | - |
item.contributor | Martins Engel, P | - |
item.contributor | KUIJPERS, Bart | - |
item.contributor | ALVARES, Luis Otavio | - |
item.fullcitation | BOGORNY, Vania; Valiati, J.F.; da Silva Camargo, S; Martins Engel, P; KUIJPERS, Bart & ALVARES, Luis Otavio (2006) A Mining Maximal Generalized Frequent Geographic Patterns With Knowledge Constraints. In: Clifton, CW & Zhong, N & Liu, JM & Wah, BW & Wu, XD (Ed.) Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006). p. 813-817.. | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2008 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
paperICDM.pdf | Peer-reviewed author version | 789.39 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.