Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOGORNY, Vania-
dc.contributor.authorValiati, J.F.-
dc.contributor.authorda Silva Camargo, S-
dc.contributor.authorMartins Engel, P-
dc.contributor.authorKUIJPERS, Bart-
dc.contributor.authorALVARES, Luis Otavio-
dc.date.accessioned2007-05-03T09:07:57Z-
dc.date.available2007-05-03T09:07:57Z-
dc.date.issued2006-
dc.identifier.citationClifton, CW & Zhong, N & Liu, JM & Wah, BW & Wu, XD (Ed.) Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006). p. 813-817.-
dc.identifier.isbn978-0-7695-2701-7-
dc.identifier.issn1550-4786-
dc.identifier.urihttp://hdl.handle.net/1942/1409-
dc.description.abstractIn frequent geographic pattern mining a large amount of patterns is well known a priori. This paper presents a novel approach for mining frequent geographic patterns without associations that are previously known as non-interesting. Geographic dependences are eliminated during the frequent set generation using prior knowledge. After the dependence elimination maximal generalized frequent sets are computed to remove redundant frequent sets. Experimental results show a significant reduction of both the number of frequent sets and the computational time for mining maximal frequent geographic patterns.-
dc.format.extent808333 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesIEEE International Conference on Data Mining-
dc.titleA Mining Maximal Generalized Frequent Geographic Patterns With Knowledge Constraints-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsClifton, CW-
local.bibliographicCitation.authorsZhong, N-
local.bibliographicCitation.authorsLiu, JM-
local.bibliographicCitation.authorsWah, BW-
local.bibliographicCitation.authorsWu, XD-
local.bibliographicCitation.conferencedate2006-
local.bibliographicCitation.conferencenameData Mining (ICDM 2006)-
dc.bibliographicCitation.conferencenr6-
local.bibliographicCitation.conferenceplaceHong Kong, China-
dc.identifier.epage817-
dc.identifier.spage813-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC1-
dc.identifier.isi000245601900082-
dc.identifier.urlhttp://doi.ieeecomputersociety.org/10.1109/ICDM.2006.110-
local.bibliographicCitation.btitleProceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006)-
item.fulltextWith Fulltext-
item.contributorBOGORNY, Vania-
item.contributorValiati, J.F.-
item.contributorda Silva Camargo, S-
item.contributorMartins Engel, P-
item.contributorKUIJPERS, Bart-
item.contributorALVARES, Luis Otavio-
item.fullcitationBOGORNY, Vania; Valiati, J.F.; da Silva Camargo, S; Martins Engel, P; KUIJPERS, Bart & ALVARES, Luis Otavio (2006) A Mining Maximal Generalized Frequent Geographic Patterns With Knowledge Constraints. In: Clifton, CW & Zhong, N & Liu, JM & Wah, BW & Wu, XD (Ed.) Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006). p. 813-817..-
item.accessRightsOpen Access-
item.validationecoom 2008-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
paperICDM.pdfPeer-reviewed author version789.39 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.