Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVansteelandt, Stijn-
dc.contributor.authorGOETGHEBEUR, Els-
dc.contributor.authorKenward, Michael G.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2007-05-04T12:45:38Z-
dc.date.available2007-05-04T12:45:38Z-
dc.date.issued2006-
dc.identifier.citationSTATISTICA SINICA, 16(3). p. 953-979-
dc.identifier.issn1017-0405-
dc.identifier.urihttp://hdl.handle.net/1942/1462-
dc.description.abstractIt has long been recognised that most standard point estimators lean heavily on untestable assumptions when missing data are encountered. Statisticians have therefore advocated the use of sensitivity analysis, but paid relatively little attention to strategies for summarizing the results from such analyses, summaries that have clear interpretation, verifiable properties and feasible implementation. As a step in this direction, several authors have proposed to shift the focus of inference from point estimators to estimated intervals or regions of ignorance. These regions combine standard point estimates obtained under all possible/plausible missing data models that yield identified parameters of interest. They thus reflect the achievable information from the given data generation structure with its missing data component. The standard framework of inference needs extension to allow for a transparent study of statistical properties of such regions. In this paper we propose a definition of consistency for a region and introduce the concepts of pointwise, weak and strong coverage for larger regions which acknowledge sampling imprecision in addition to the structural lack of information. The larger regions are called uncertainty regions and quantify an overall level of information by adding imprecision due to sampling error to the estimated region-
dc.format.extent395914 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.subject.otherbounds; identifiability; incomplete data; inference; pattern-mixture model; selection model-
dc.subject.otherbounds; identifiability; incomplete data; inference; pattern-mixture; model; selection model; NONRESPONSE MODELS; NONRANDOM SAMPLES; MISSING DATA; OUTCOMES; BOUNDS; COVARIATE; TRIALS-
dc.titleIgnorance and uncertainty regions as inferential tools in a sensitivity analysis-
dc.typeJournal Contribution-
dc.identifier.epage979-
dc.identifier.issue3-
dc.identifier.spage953-
dc.identifier.volume16-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000240123900017-
dc.identifier.urlhttp://www3.stat.sinica.edu.tw/statistica/-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorMOLENBERGHS, Geert-
item.contributorVansteelandt, Stijn-
item.contributorKenward, Michael G.-
item.contributorGOETGHEBEUR, Els-
item.fullcitationVansteelandt, Stijn; GOETGHEBEUR, Els; Kenward, Michael G. & MOLENBERGHS, Geert (2006) Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. In: STATISTICA SINICA, 16(3). p. 953-979.-
item.validationecoom 2007-
crisitem.journal.issn1017-0405-
crisitem.journal.eissn1996-8507-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
SS-04-176-resubmission.pdfPeer-reviewed author version386.63 kBAdobe PDFView/Open
a.pdfPublished version2.19 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

94
checked on Jul 1, 2022

Page view(s)

12
checked on Jul 3, 2022

Download(s)

6
checked on Jul 3, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.