Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/14674
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | GROUWELS, Yves | - |
dc.contributor.author | BRAEKERS, Roel | - |
dc.date.accessioned | 2013-03-15T08:32:18Z | - |
dc.date.available | 2013-03-15T08:32:18Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | SCo 2011 Proceedings | - |
dc.identifier.isbn | 978 88 6129 753 1 | - |
dc.identifier.uri | http://hdl.handle.net/1942/14674 | - |
dc.description.abstract | In this paper, we introduce a semi-parametric regression model for left-censored data in which the response variable has a positive discrete probability at the value zero. To investigate the influence of covariates on the probability on a zero-value, a logistic regression model is used. For the strict positive part of the response variable, a Cox’s regression model is given to model the influence of the covariates. The different parameters in the model are estimated using a likelihood method. Hereby,the baseline hazard function is an infinite dimensional parameter and is estimated by a step-function. As results, we show the consistency of the estimators for the different finite- and infinite-dimensional parameters in the model. We also present a simulation study and apply this model on a practical data example. | - |
dc.description.sponsorship | grand BOF09D01 of Hasselt University; IAP Research Network P7/06 of the Belgian State. | - |
dc.language.iso | en | - |
dc.subject.other | Cox's regression; left-censoring; zero-inflated | - |
dc.title | Zero-inflated semi-parametric Cox's regression model for left-censored survival data | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.conferencedate | 19-21 September 2011 | - |
local.bibliographicCitation.conferencename | SCo 2011: 7th Conference on Statistical Computation and Complex Systems | - |
local.bibliographicCitation.conferenceplace | Padua, Italy | - |
dc.identifier.epage | 6 | - |
dc.identifier.spage | 1 | - |
local.bibliographicCitation.jcat | C1 | - |
dc.relation.references | BLACKWOOD, L. G. (1991): Analyzing censored environmental data using survival analysis: single sample techniques. Environmental Monitoring and Assessment, 18, 25-40. COX, D.R. (1972): Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B (Methodological), 34, 187-220. KIM, Y., KIM, B, JANG, W. (2010): Asymptotic properties of the maximum likelihood estimator for the proportional hazards model with doubly censored data. Journal of Multivariate Analysis, 101, 1339-1351. MARKEL, P.D., DEFRIES, J.C., JOHNSON, T.E. (1995): Ethanol-induced anesthesia in inbred strains of long-sleep and short-sleep mice: A genetic analysis of repeated measures using censored data. Behavior Genetics, 25, 67-73. MOULTON, L.H., HALSEY, N.A. (1995): A mixture model with detection limits for regression analysis of antibody response to vaccine. Biometrics, 51, 1570-1578. PARNER, E. (1998): Asymptotic theory for the correlated gamma frailty model. The Annals of Statistics, 26, 183-214. YANG, Y., SIMPSON, D. (2010): Unified computational methods for regression analysis of zeroinflated and bound-inflated data. Computational Statistics and Data Analysis, 54, 1525-1534. | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
dc.identifier.url | http://homes.stat.unipd.it/mgri/SCo2011/Papers/CS/ | - |
local.bibliographicCitation.btitle | SCo 2011 Proceedings | - |
item.fulltext | With Fulltext | - |
item.contributor | GROUWELS, Yves | - |
item.contributor | BRAEKERS, Roel | - |
item.fullcitation | GROUWELS, Yves & BRAEKERS, Roel (2011) Zero-inflated semi-parametric Cox's regression model for left-censored survival data. In: SCo 2011 Proceedings. | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Proceedings_sco_2011.pdf | 54.93 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.