Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14819
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEFENDI, Achmad-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2013-03-26T14:19:44Z-
dc.date.available2013-03-26T14:19:44Z-
dc.date.issued2013-
dc.identifier.citationJournal of Biopharmaceutical Statistics, 23 (6), p. 1420-1434-
dc.identifier.issn1054-3406-
dc.identifier.urihttp://hdl.handle.net/1942/14819-
dc.description.abstractThe aim of this article is to propose a multilevel combined model for repeated, hierarchical, and overdispersed time-to-event outcomes, extending the so-called combined model proposed by Molenberghs et al. (2010), and using three different estimation strategies: full likelihood, pseudo-likelihood, and Bayesian estimation. For the first two estimation methods, we implemented the alternating imputation posterior (AIP) algorithm (Clayton and Rasbash, 1999). It is shown that the multilevel combined model can be fitted nicely using all three estimation methods. In addition, the multilevel combined model has the advantage that it not only can capture the hierarchical structure of the data but also can accommodate overdispersion within the data set. From our simulation results, it follows that the multilevel combined model performs well in terms of point estimation and its precision, fitted with the three different estimation methods. We also observed that pairwise likelihood estimation, a particular form of pseudo-likelihood, is more time-intensive than full likelihood and Bayesian estimation. However, pseudo-likelihood estimation is less sensitive to starting values.-
dc.description.sponsorshipThe authors gratefully acknowledge the financial support from the IAP research network Phase VI of the Belgian Science Policy.-
dc.language.isoen-
dc.rights© Taylor & Francis Group, LLC-
dc.subject.otherBayesian estimation; combined model; maximum likelihood; multilevel model; pairwise likelihood; random-effects model; Weibull distribution-
dc.titleA multilevel model for hierarchical, repeated, and overdispersed time-to-event outcomes and its estimation strategies-
dc.typeJournal Contribution-
dc.identifier.epage1434-
dc.identifier.issue6-
dc.identifier.spage1420-
dc.identifier.volume23-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notesReprint Address: Molenberghs, G (reprint author) - Univ Hasselt, Ctr Stat, Agoralaan 1, B-3590 Diepenbeek, Belgium. E-mail Addresses:geert.molenberghs@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/10543406.2013.834914-
dc.identifier.isi000325786600013-
item.validationecoom 2014-
item.contributorEFENDI, Achmad-
item.contributorMOLENBERGHS, Geert-
item.fullcitationEFENDI, Achmad & MOLENBERGHS, Geert (2013) A multilevel model for hierarchical, repeated, and overdispersed time-to-event outcomes and its estimation strategies. In: Journal of Biopharmaceutical Statistics, 23 (6), p. 1420-1434.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1054-3406-
crisitem.journal.eissn1520-5711-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
estimationformultilevel07.pdfPeer-reviewed author version184.35 kBAdobe PDFView/Open
efendi2013.pdf
  Restricted Access
Published version312.87 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.