Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14833
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorEFENDI, Achmad-
dc.contributor.authorBRAEKERS, Roel-
dc.contributor.authorDemétrio, Clarice G.B.-
dc.date.accessioned2013-03-27T10:07:51Z-
dc.date.available2013-03-27T10:07:51Z-
dc.date.issued2014-
dc.identifier.citationStatistical Methods in Medical Research, 24 (4), p. 434-452-
dc.identifier.issn0962-2802-
dc.identifier.urihttp://hdl.handle.net/1942/14833-
dc.description.abstractThis paper presents, extends, and studies a model for repeated, overdispersed time-to-event outcomes, subject to censoring. Building upon work by Molenberghs, Verbeke en Demétrio(2007) and Molenberghs et al. (2010), gamma and normal random effects are included in a Weibull model, to account for overdispersion and between-subjects effects, respectively. Unlike these authors, censoring is allowed for. Two estimation methods are presented. The partial marginalization approach to full maximum likelihood of Molenberghs et al. (2010) is contrasted with pseudo-likelihood estimation. A limited simulation study is conducted to examine the relative merits of these estimation methods. The modeling framework is employed to analyze data on recurrent asthma attacks in children on the one hand and on survival in cancer patients on the other.-
dc.description.sponsorshipFinancial support from the IAP research network #P6/03 of the Belgian Government (Belgian Science Policy) is gratefully acknowledged. This work was partially supported by a grant from Conselho de Desenvolvimento Cientifico e Tecnologico (CNPq), a Brazilian science funding agency.-
dc.language.isoen-
dc.rights© The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav-
dc.subject.otherexponential model; generalized Cauchy distribution; conjugacy; maximum likelihood; frailty model; pseudo-likelihood; strong conjugacy; Weibull model-
dc.titleA combined gamma frailty and normal random-effects model for repeated, overdispersed time-to-event data-
dc.typeJournal Contribution-
dc.identifier.epage452-
dc.identifier.issue4-
dc.identifier.spage434-
dc.identifier.volume24-
local.format.pages20-
local.format.pages25-
local.bibliographicCitation.jcatA1-
dc.description.notesCorresponding author: Geert Molenberghs, I-BioStat, Universiteit Hasselt, B-3590 Diepenbeek, Belgium. geert.molenberghs@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1177/0962280214520730-
dc.identifier.isi000358452800004-
item.validationecoom 2016-
item.contributorMOLENBERGHS, Geert-
item.contributorVERBEKE, Geert-
item.contributorEFENDI, Achmad-
item.contributorBRAEKERS, Roel-
item.contributorDemétrio, Clarice G.B.-
item.fullcitationMOLENBERGHS, Geert; VERBEKE, Geert; EFENDI, Achmad; BRAEKERS, Roel & Demétrio, Clarice G.B. (2014) A combined gamma frailty and normal random-effects model for repeated, overdispersed time-to-event data. In: Statistical Methods in Medical Research, 24 (4), p. 434-452.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn0962-2802-
crisitem.journal.eissn1477-0334-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
overdispersionsurvival08.pdfPeer-reviewed author version250.9 kBAdobe PDFView/Open
427.pdf
  Restricted Access
Published version268.7 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.