Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14834
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKALEMA, George-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2013-03-27T10:19:20Z-
dc.date.available2013-03-27T10:19:20Z-
dc.date.issued2012-
dc.identifier.citationCOMMUNICATIONS IN STATISTICS-THEORY AND METHODS 43(22), p. 4790-4805-
dc.identifier.issn0361-0926-
dc.identifier.urihttp://hdl.handle.net/1942/14834-
dc.description.abstractGeneralized Estimating Equations (GEE) are a widespread tool for modeling corelated data, based on properly formulating a marginal regression function, combined with working assumptions about the correlation function. Should interest be placed in addition on the correlation function, then, apart from second-order GEE, pseudo-likelihood (PL) also provides an attractive alternative, especially in its pairwise form, where the covariance between each pair of the response vector is modeled as well. An elegant PL approach is formulated in this paper, based on a flexible bivariate Poisson model. The performance of the PL-method is studied, relative to GEE, using simulations. Data on repeated counts of epileptic seizures in a two-arm clinical trial are analyzed. A macro has been developed by the authors and made available on their web pages.-
dc.description.sponsorshipThe authors gratefully acknowledge support from IAP research Network P6/03 of the Belgian Government (Belgian Science Policy).-
dc.language.isoen-
dc.rights© Taylor & Francis Group, LLC-
dc.subject.otherbivariate poisson distribution; correlated data; generalized estimating equations; pseudo-likelihood-
dc.titlePseudo-likelihood methodology for hierarchical count data-
dc.typeJournal Contribution-
dc.identifier.epage4805-
dc.identifier.issue22-
dc.identifier.spage4790-
dc.identifier.volume43-
local.bibliographicCitation.jcatA1-
dc.description.notesMolenberghs, G (reprint author), I Biostat Univ Hasselt, Agoralaan 1, B-3590 Diepenbeek, Belgium. geert.molenberghs@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/03610926.2012.744053-
dc.identifier.isi000347540500008-
item.fulltextWith Fulltext-
item.contributorKALEMA, George-
item.contributorMOLENBERGHS, Geert-
item.fullcitationKALEMA, George & MOLENBERGHS, Geert (2012) Pseudo-likelihood methodology for hierarchical count data. In: COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 43(22), p. 4790-4805.-
item.accessRightsOpen Access-
item.validationecoom 2016-
crisitem.journal.issn0361-0926-
crisitem.journal.eissn1532-415X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
paper106.pdfPeer-reviewed author version177.02 kBAdobe PDFView/Open
kalema2014.pdf
  Restricted Access
Published version132.37 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.