Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15310
Title: The Hirsch index of a shifted Lotka function and its relation with the impact factor
Authors: EGGHE, Leo 
ROUSSEAU, Ronald 
Issue Date: 2012
Publisher: WILEY-BLACKWELL
Source: JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 63 (5), p. 1048-1053
Abstract: Based on earlier results about the shifted Lotka function, we prove an implicit functional relation between the Hirsch index (h-index) and the total number of sources (T). It is shown that the corresponding function, h(T), is concavely increasing. Next, we construct an implicit relation between the h-index and the impact factor IF (an average number of items per source). The corresponding function h(IF) is increasing and we show that if the parameter C in the numerator of the shifted Lotka function is high, then the relation between the h-index and the impact factor is almost linear.
Notes: Egghe, L (reprint author), Univ Hasselt UHasselt, B-3590 Diepenbeek, Belgium. Univ Antwerp, IBW, B-2000 Antwerp, Belgium. KHBO Assoc KU Leuven, Fac Engn Technol, B-8400 Oostende, Belgium. Katholieke Univ Leuven, Dept Math, B-3000 Heverlee, Belgium. leo.egghe@uhasselt.be; ronald.rousseau@khbo.be
Keywords: Computer Science, Information Systems; Information Science & Library Science;bibliometrics
Document URI: http://hdl.handle.net/1942/15310
ISSN: 1532-2882
DOI: 10.1002/asi.22617
ISI #: 000303500300013
Category: A1
Type: Journal Contribution
Validations: ecoom 2014
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
egghe 1.pdf
  Restricted Access
Published version200.38 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.