Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16076
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBRIJDER, Robert-
dc.date.accessioned2013-12-20T10:07:58Z-
dc.date.available2013-12-20T10:07:58Z-
dc.date.issued2013-
dc.identifier.citationLINEAR ALGEBRA AND ITS APPLICATIONS, 439 (11), p. 3638-3642-
dc.identifier.issn0024-3795-
dc.identifier.urihttp://hdl.handle.net/1942/16076-
dc.description.abstractWe generalize the nullity theorem of Gustafson (1984) [8] from matrix inversion to principal pivot transform. Several special cases of the obtained result are known in the literature, such as a result concerning local complementation on graphs. As an application, we show that a particular matrix polynomial, the so-called nullity polynomial, is invariant under principal pivot transform. (C) 2013 Elsevier Inc. All rights reserved.-
dc.language.isoen-
dc.subject.otherNullity theorem; Principal pivot transform; Schur complement; Local complementation; Nullity polynomial-
dc.titleThe nullity theorem for principal pivot transform-
dc.typeJournal Contribution-
dc.identifier.epage3642-
dc.identifier.issue11-
dc.identifier.spage3638-
dc.identifier.volume439-
local.bibliographicCitation.jcatA1-
dc.description.notesBrijder, R (reprint author), Hasselt Univ, Diepenbeek, Belgium. robert.brijder@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.laa.2013.09.014-
dc.identifier.isi000327174000025-
item.contributorBRIJDER, Robert-
item.fullcitationBRIJDER, Robert (2013) The nullity theorem for principal pivot transform. In: LINEAR ALGEBRA AND ITS APPLICATIONS, 439 (11), p. 3638-3642.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2014-
crisitem.journal.issn0024-3795-
crisitem.journal.eissn1873-1856-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
brijder 1.pdfPublished version163.47 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.