Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/16123
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | NYSEN, Ruth | - |
dc.contributor.author | AERTS, Marc | - |
dc.contributor.author | FAES, Christel | - |
dc.date.accessioned | 2014-01-10T10:32:40Z | - |
dc.date.available | 2014-01-10T10:32:40Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Muggeo, Vito M.R.; Capursi, Vincenza; Boscaino, Giovanni; Lovison, Gianfranco (Ed.). Proceedings of the 28th International Workshop on Statistical Modelling Volume 1, p. 307-312 | - |
dc.identifier.isbn | 978-88-96251-47-8 | - |
dc.identifier.uri | http://hdl.handle.net/1942/16123 | - |
dc.description.abstract | Quantiles are of interest in food safety data dealing with a limit of detection. The limit of detection introduces a lot of uncertainty in the left tail of the underlying distribution, making quantile estimation for this part of the distribution difficult. Therefore we fit a model to the data and derive the model-based estimate for the quantile. Since the true distribution is unknown, model averaging is used to combine information from a set of models. In this paper we discuss two approaches to use model averaging for quantiles. The methods are applied to a data example and compared in a simulation study. The effect of an increasing percentage of censoring on the estimates is explored. | - |
dc.language.iso | en | - |
dc.publisher | Istituto Poligrafico Europeo | - |
dc.subject.other | Censoring; Model averaging; Quantiles | - |
dc.title | Model averaging quantiles for censored data | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.authors | Muggeo, Vito M.R. | - |
local.bibliographicCitation.authors | Capursi, Vincenza | - |
local.bibliographicCitation.authors | Boscaino, Giovanni | - |
local.bibliographicCitation.authors | Lovison, Gianfranco | - |
local.bibliographicCitation.conferencedate | 8 July 2013 - 12 July 2013 | - |
local.bibliographicCitation.conferencename | 28th International Workshop on Statistical Modelling | - |
local.bibliographicCitation.conferenceplace | Palermo, Italy | - |
dc.identifier.epage | 312 | - |
dc.identifier.spage | 307 | - |
local.bibliographicCitation.jcat | C1 | - |
local.publisher.place | Palermo, Italy | - |
dc.relation.references | Burnham, K.P. and Anderson, R.A. (1998). Model selection and inference: A practical information-theoretic approach. New York: Springer-Verlag. Fenton, V.M. and Gallant, A.R. (1996). Qualitative and asymptotic performance of SNP density estimators. Journal of Econometrics, 74, 77 - 118. Gallant, A.R. and Nychka, D.W. (1987) Semi-nonparametric maximum likelihood estimation. Econometrica, 55(2), 363 - 390. Nysen, R., Aerts, M. and Faes, C. (2012), Testing goodness of fit of parametric models for censored data. Statistics in Medicine, 31, 2374 - 2385. | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
local.bibliographicCitation.btitle | Proceedings of the 28th International Workshop on Statistical Modelling Volume 1 | - |
item.contributor | NYSEN, Ruth | - |
item.contributor | AERTS, Marc | - |
item.contributor | FAES, Christel | - |
item.fullcitation | NYSEN, Ruth; AERTS, Marc & FAES, Christel (2013) Model averaging quantiles for censored data. In: Muggeo, Vito M.R.; Capursi, Vincenza; Boscaino, Giovanni; Lovison, Gianfranco (Ed.). Proceedings of the 28th International Workshop on Statistical Modelling Volume 1, p. 307-312. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NysenAertsFaes2013.pdf | Peer-reviewed author version | 241.37 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.