Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17041
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNooraee, Nazanin-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorvan den Heuvel, Edwin R.-
dc.date.accessioned2014-07-29T13:35:04Z-
dc.date.available2014-07-29T13:35:04Z-
dc.date.issued2014-
dc.identifier.citationCOMPUTATIONAL STATISTICS & DATA ANALYSIS, 77, p. 70-83-
dc.identifier.issn0167-9473-
dc.identifier.urihttp://hdl.handle.net/1942/17041-
dc.description.abstractStudies in epidemiology and social sciences are often longitudinal and outcome measures are frequently obtained by questionnaires in ordinal scales. To understand the relationship between explanatory variables and outcome measures, generalized estimating equations can be applied to provide a population-averaged interpretation and address the correlation between outcome measures. It can be performed by different software packages, but a motivating example showed differences in the output. This paper investigated the performance of GEE in R (version 3.0.2), SAS (version 9.4), and SPSS (version 22.0.0) using simulated data under default settings. Multivariate logistic distributions were used in the simulation to generate correlated ordinal data. The simulation study demonstrated substantial bias in the parameter estimates and numerical issues for data sets with relative small number of subjects. The unstructured working association matrix requires larger numbers of subjects than the independence and exchangeable working association matrices to reduce the bias and diminish numerical issues. The coverage probabilities of the confidence intervals for fixed parameters were satisfactory for the independence and exchangeable working association matrix, but they were frequently liberal for the unstructured option. Based on the performance and the available options, SPSS and multgee, and repolr in R all perform quite well for relatively large sample sizes (e.g. 300 subjects), but multgee seems to do a little better than SPSS and repolr in most settings. (C) 2014 Elsevier B.V. All rights reserved.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.rights© 2014 Elsevier B.V. All rights reserved.-
dc.subject.otherCorrelated ordinal data; Generalized estimating equations; Copula; Multivariate logistic distribution; Bridge distribution-
dc.subject.othercorrelated ordinal data; generalized estimating equations; copula; multivariate logistic distribution; bridge distribution-
dc.titleGEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN-
dc.typeJournal Contribution-
dc.identifier.epage83-
dc.identifier.spage70-
dc.identifier.volume77-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notes[Nooraee, Nazanin; van den Heuvel, Edwin R.] Univ Groningen, Univ Med Ctr Groningen, NL-9700 RB Groningen, Netherlands. [Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, Leuven, Belgium. [Molenberghs, Geert] Univ Hasselt, I BioStat, Diepenbeek, Belgium.-
local.publisher.placeAMSTERDAM-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.csda.2014.03.009-
dc.identifier.isi000337869500006-
item.validationecoom 2015-
item.contributorNooraee, Nazanin-
item.contributorMOLENBERGHS, Geert-
item.contributorvan den Heuvel, Edwin R.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationNooraee, Nazanin; MOLENBERGHS, Geert & van den Heuvel, Edwin R. (2014) GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN. In: COMPUTATIONAL STATISTICS & DATA ANALYSIS, 77, p. 70-83.-
crisitem.journal.issn0167-9473-
crisitem.journal.eissn1872-7352-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
nooraee 1.pdf
  Restricted Access
Published version432.78 kBAdobe PDFView/Open    Request a copy
432.pdfPeer-reviewed author version836.1 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.