Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17174
Title: The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination
Authors: WEYENS, Nele 
BECKERS, Bram 
SCHELLINGEN, Kerim 
VAN DER LELIE, Daniel 
Newman, Lee
Ceulemans, Reinhart
CARLEER, Robert 
VANGRONSVELD, Jaco 
Taghavi, Safiyh
Issue Date: 2015
Source: INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 17 (1), p. 40-48
Abstract: To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.
Notes: Address correspondence to Nele Weyens, Hasselt University, Environmental Biology, Agoralaan, building D, B-3590 Diepenbeek, Belgium. E-mail: nele.weyens@uhasselt.be
Keywords: Pseudomonas putida; co-contamination; endophytes; phytoremediation; poplar
Document URI: http://hdl.handle.net/1942/17174
ISSN: 1522-6514
e-ISSN: 1549-7879
DOI: 10.1080/15226514.2013.828016
ISI #: 000341024400005
Rights: Copyright © Taylor & Francis Group, LLC
Category: A1
Type: Journal Contribution
Validations: ecoom 2015
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

25
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

32
checked on Apr 15, 2024

Page view(s)

82
checked on Aug 9, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.