Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18068
Title: Slow divergence integrals in generalized Liénard equations near centers
Authors: HUZAK, Renato 
DE MAESSCHALCK, Peter 
Issue Date: 2014
Source: Electronic Journal of Qualitative Theory of Differential Equations (66), p. 1-10
Abstract: Using techniques from singular perturbations we show that for any n≥6 and m≥2 there are Liénard equations {x˙=y−F(x), y˙=G(x)}, with F a polynomial of degree n and G a polynomial of degree m, having at least 2[n−2/2]+[m/2] hyperbolic limit cycles, where [⋅] denotes "the greatest integer equal or below".
Keywords: slow-fast systems; slow divergence integral; generalized Liénard equations
Document URI: http://hdl.handle.net/1942/18068
Link to publication/dataset: http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3307
ISSN: 1417-3875
e-ISSN: 1417-3875
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
p3307.pdf367.63 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.