Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18293
Title: Slow divergence integrals in generalized Lienard equations near centers
Authors: HUZAK, Renato 
DE MAESSCHALCK, Peter 
Issue Date: 2014
Publisher: UNIV SZEGED, BOLYAI INSTITUTE
Source: ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS (66), p. 1-10
Abstract: Using techniques from singular perturbations we show that for any n >= 6 and m >= 2 there are Lienard equations {x = y - F(x), y = G ( x)}, with F a polynomial of degree n and G a polynomial of degree m, having at least 2[n-2/2] + [m/2] hyperbolic limit cycles, where [center dot] denotes "the greatest integer equal or below".
Notes: [Huzak, Renato; De Maesschalck, Peter] Hasselt Univ, B-3590 Diepenbeek, Belgium.
Keywords: generalized Liénard equations; limit cycles; slow divergence integral; slowfast systems;generalized Lienard equations; limit cycles; slow divergence integral; slow-fast systems
Document URI: http://hdl.handle.net/1942/18293
ISSN: 1417-3875
e-ISSN: 1417-3875
ISI #: 000347538200001
Category: A1
Type: Journal Contribution
Validations: ecoom 2016
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
p3307.pdf367.63 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.