Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/19023
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHUZAK, Renato-
dc.date.accessioned2015-07-27T07:57:19Z-
dc.date.available2015-07-27T07:57:19Z-
dc.date.issued2016-
dc.identifier.citationDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 36 (1), p. 171-215-
dc.identifier.issn1078-0947-
dc.identifier.urihttp://hdl.handle.net/1942/19023-
dc.description.abstractThis paper is the continuation of our previous papers [16] and [17] where we studied small-amplitude limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations. We find optimal upper bounds for the number of small-amplitude limit cycles in these slow-fast codimension 3 bifurcations. We use techniques from geometric singular perturbation theory.-
dc.language.isoen-
dc.subject.otherblow-up; center manifold; cyclicity; normal forms; singular perturbations; slow-fast systems-
dc.titleCyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations-
dc.typeJournal Contribution-
dc.identifier.epage215-
dc.identifier.issue1-
dc.identifier.spage171-
dc.identifier.volume36-
local.bibliographicCitation.jcatA1-
dc.description.notesHuzak, R (reprint author), Hasselt Univ, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.renato.huzak@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.3934/dcds.2016.36.171-
dc.identifier.isi000360924100007-
item.contributorHUZAK, Renato-
item.fullcitationHUZAK, Renato (2016) Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 36 (1), p. 171-215.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2016-
crisitem.journal.issn1078-0947-
crisitem.journal.eissn1553-5231-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
pdfs.pdfPublished version1.83 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.