Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/20872
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKombo, A.Y.-
dc.contributor.authorMwambi, H.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2016-03-31T15:14:25Z-
dc.date.available2016-03-31T15:14:25Z-
dc.date.issued2016-
dc.identifier.citationJournal of applied statistics, 44 (2), p. 270-287-
dc.identifier.issn0266-4763-
dc.identifier.urihttp://hdl.handle.net/1942/20872-
dc.description.abstractMissing data often complicate the analysis of scientific data. Multiple imputation is a general purpose technique for analysis of datasets with missing values. The approach is applicable to a variety of missing data patterns but often complicated by some restrictions like the type of variables to be imputed and the mechanism underlying the missing data. In this paper, the authors compare the performance of two multiple imputation methods, namely fully conditional specification and multivariate normal imputation in the presence of ordinal outcomes with monotone missing data patterns. Through a simulation study and an empirical example, the authors show that the two methods are indeed comparable meaning any of the two may be used when faced with scenarios, at least, as the ones presented here.-
dc.language.isoen-
dc.rights© 2016 Informa UK Limited, trading as Taylor & Francis Group-
dc.subject.otherlongitudinal data; ordinal outcome; monotone missing data patterns; fullyconditional specification; multivariate normal imputation; proportional odds model-
dc.titleMultiple imputation for ordinal longitudinal data with nonmonotone missing data patterns-
dc.typeJournal Contribution-
dc.identifier.epage287-
dc.identifier.issue2-
dc.identifier.spage270-
dc.identifier.volume44-
local.format.pages18-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.identifier.vabbc:vabb:414967-
dc.identifier.doi10.1080/02664763.2016.1168370-
dc.identifier.isi000394567300005-
item.validationecoom 2018-
item.validationvabb 2018-
item.contributorKombo, A.Y.-
item.contributorMwambi, H.-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationKombo, A.Y.; Mwambi, H. & MOLENBERGHS, Geert (2016) Multiple imputation for ordinal longitudinal data with nonmonotone missing data patterns. In: Journal of applied statistics, 44 (2), p. 270-287.-
crisitem.journal.issn0266-4763-
crisitem.journal.eissn1360-0532-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
481.pdf
  Restricted Access
Published version1.8 MBAdobe PDFView/Open    Request a copy
Revision_ordinalJAPS.pdfPeer-reviewed author version361.57 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.