Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/21890
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | BOUTEN, Marcus | - |
dc.contributor.author | Schietse, Jan | - |
dc.date.accessioned | 2016-08-04T09:05:34Z | - |
dc.date.available | 2016-08-04T09:05:34Z | - |
dc.date.issued | 1996 | - |
dc.identifier.uri | http://hdl.handle.net/1942/21890 | - |
dc.description.abstract | Not available | - |
dc.language.iso | en | - |
dc.subject.other | Artificial neural networks, repulsive potential, Bayesian learning, Learning rules, Gradient descent learning, Gaussian model, Gibbs learning, Ising teacher problem | - |
dc.title | Towards Bayesian learning for the perceptron | - |
dc.type | Theses and Dissertations | - |
local.format.pages | 147 | - |
local.bibliographicCitation.jcat | T1 | - |
local.type.specified | Phd thesis | - |
item.accessRights | Open Access | - |
item.contributor | Schietse, Jan | - |
item.fullcitation | Schietse, Jan (1996) Towards Bayesian learning for the perceptron. | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | PhD theses Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Jan Schietse.pdf | 10.23 MB | Adobe PDF | View/Open |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.