Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/2190
Title: | Absolutely indecomposable representations and Kac-Moody Lie algebras | Authors: | Crawley-Boevey, W VAN DEN BERGH, Michel |
Issue Date: | 2004 | Publisher: | SPRINGER-VERLAG | Source: | INVENTIONES MATHEMATICAE, 155(3). p. 537-559 | Abstract: | A conjecture of Kac states that the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field with given dimension vector has positive coefficients and furthermore that its constant term is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we prove these conjectures for indivisible dimension vectors. | Notes: | Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England. Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Crawley-Boevey, W, Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England.w.crawley-boevey@leeds.ac.uk vdbergh@luc.ac.be | Document URI: | http://hdl.handle.net/1942/2190 | ISSN: | 0020-9910 | e-ISSN: | 1432-1297 | DOI: | 10.1007/s00222-003-0329-0 | ISI #: | 000188839900003 | Category: | A1 | Type: | Journal Contribution | Validations: | ecoom 2005 |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
0106009v3.pdf | 253.13 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.