Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22553
Title: Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillarity effects
Authors: KARPINSKI, Stefan 
POP, Sorin 
Issue Date: 2017
Source: NUMERISCHE MATHEMATIK, 136(1), p. 249-286
Abstract: We present an interior penalty discontinuous Galerkin scheme for a two-phase porous media flow model that incorporates dynamic effects in the capillary pressure. The approximation of the mass-conservation laws is performed in their original formulation, without introducing a global pressure. We prove the existence of a solution to the emerging fully discrete systems and the convergence of the scheme. Error-estimates are obtained for sufficiently smooth data.
Keywords: porous media; two phase flow; dynamic capillarity; discontinuous Galerkin method; convergence; error estimates
Document URI: http://hdl.handle.net/1942/22553
ISSN: 0029-599X
e-ISSN: 0945-3245
DOI: 10.1007/s00211-016-0839-5
ISI #: 000399173300008
Rights: © Springer-Verlag Berlin Heidelberg 2016
Category: A1
Type: Journal Contribution
Validations: ecoom 2018
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
manuscript.pdfPeer-reviewed author version1.06 MBAdobe PDFView/Open
art%3A10.1007%2Fs00211-016-0839-5.pdf
  Restricted Access
Published version1.17 MBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.