Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/22607
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | HUZAK, Renato | - |
dc.date.accessioned | 2016-11-14T15:21:41Z | - |
dc.date.available | 2016-11-14T15:21:41Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | JOURNAL OF DIFFERENTIAL EQUATIONS, 262 (2), p. 1119-1154 | - |
dc.identifier.issn | 0022-0396 | - |
dc.identifier.uri | http://hdl.handle.net/1942/22607 | - |
dc.description.abstract | Using geometric singular perturbation theory, including the family blow-up as one of the main techniques, we prove that the cyclicity, i.e. maximum number of limit cycles, in both regular and slow-fast unfoldings of nilpotent saddle-node singularity of codimension 4 is 2. The blow-up technique enables us to use the well known results for slow-fast codimension 1 and 2 Hopf bifurcations, slow-fast Bogdanov–Takens bifurcations and slow-fast codimension 3 saddle and elliptic bifurcations. | - |
dc.language.iso | en | - |
dc.rights | © 2016 Elsevier Inc. All rights reserved | - |
dc.subject.other | blow-up; limit cycles; singular perturbations; slow-fast systems | - |
dc.title | Regular and slow-fast codimension 4 saddle-node bifurcations | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 1154 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 1119 | - |
dc.identifier.volume | 262 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Huzak, R (reprint author), Hasselt Univ, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium. renato.huzak@uhasselt.be | - |
dc.relation.references | [1]H.W. Broer, V. Naudot, R. Roussarie, K. Saleh, A predator–prey model with non-monotonic response function, Regul. Chaotic Dyn. 11(2) (2006) 155–165. [2]R.I. Bogdanov, The versal deformation of a singular point of a vector field on the plane in the case of zero eigenval-ues, in: Trudy Sem. Petrovsk. (Vyp.2), 1976, pp.37–65. [3]W.A. Coppel, Some quadratic systems with at most one limit cycle, in: Dynamics Reported, vol.2, in: Dynam. Report. Ser. Dynam. Systems Appl., vol.2, Wiley, Chichester, 1989, pp.61–88. [4]Freddy Dumortier, Peter De Maesschalck, Topics on singularities and bifurcations of vector fields, in: Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, in: NATO Sci. Ser. II Math. Phys. Chem., vol.137, Kluwer Acad. Publ., Dordrecht, 2004, pp.33–86. [5]Freddy Dumortier, Chengzhi Li, On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations, Nonlinearity 9(6) (1996) 1489–1500. [6]Freddy Dumortier, Chengzhi Li, Quadratic Liénard equations with quadratic damping, J. Differential Equations 139(1) (1997) 41–59. [7]P. De Maesschalck, F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations 215(2) (2005) 225–267. [8]P. De Maesschalck, F. Dumortier, Canard cycles in the presence of slow dynamics with singularities, Proc. Roy. Soc. Edinburgh Sect. A 138(2) (2008) 265–299. [9]P. De Maesschalck, F. Dumortier, Singular perturbations and vanishing passage through a turning point, J. Differ-ential Equations 248(9) (2010) 2294–2328. [10]P. De Maesschalck, F. Dumortier, Slow-fast Bogdanov–Takens bifurcations, J. Differential Equations 250(2) (2011) 1000–1025. [11]Peter De Maesschalck, Freddy Dumortier, Detectable canard cycles with singular slow dynamics of any order at the turning point, Discrete Contin. Dyn. Syst. 29(1) (2011) 109–140. [12]P. De Maesschalck, F. Dumortier, R. Roussarie, Cyclicity of common slow-fast cycles, Indag. Math. (N.S.) 22(3–4) (2011) 165–206. [13]Peter De Maesschalck, Martin Wechselberger, Neural excitability and singular bifurcations, J. Math. Neurosci. 5 (2015) 16. [14]Freddy Dumortier, Christiane Rousseau, Cubic Liénard equations with linear damping, Nonlinearity 3(4) (1990) 1015–1039. [15]F. Dumortier, R. Roussarie, Canard Cycles and Center Manifolds, with an appendix by Li Chengzhi, Mem. Amer. Math. Soc., vol.121(577), 1996, x+100. [16]F. Dumortier, R. Roussarie, Birth of canard cycles, Discrete Contin. Dyn. Syst. Ser. S 2(4) (2009) 723–781. [17]F. Dumortier, R. Roussarie, J. Sotomayor, H. Zoladek, Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals, Lecture Notes in Mathematics, vol.1480, Springer-Verlag, Berlin, 1991. [18]Freddy Dumortier, Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations, in: Bifurcations and Periodic Orbits of Vector Fields, Montreal, PQ, 1992, in: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 408, pp.19–73. [19]F. Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations, J. Differential Equations 224(2) (2006) 296–313. [20]F. Dumortier, Slow divergence integral and balanced canard solutions, Qual. Theory Dyn. Syst. 10(1) (2011) 65–85. [21]Jordi-Lluís Figueras, Warwick Tucker, Jordi Villadelprat, Computer-assisted techniques for the verification of the Chebyshev property of Abelian integrals, J. Differential Equations 254(8) (2013) 3647–3663. [22]Ilona Gucwa, Peter Szmolyan, Geometric singular perturbation analysis of an autocatalator model, Discrete Contin. Dyn. Syst. Ser. S 2(4) (2009) 783–806. [23]R. Huzak, P. De Maesschalck, F. Dumortier, Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations, J. Differential Equations 255(11) (2013) 4012–4051. [24]R. Huzak, P. De Maesschalck, F. Dumortier, Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations, Commun. Pure Appl. Anal. 13(6) (2014) 2641–2673. [25]Renato Huzak, Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations, Discrete Contin. Dyn. Syst. 36(1) (2016) 171–215. [26]M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations 174(2) (2001) 312–368. [27]Ilona Kosiuk, Peter Szmolyan, Scaling in singular perturbation problems: blowing up a relaxation oscillator, SIAM J. Appl. Dyn. Syst. 10(4) (2011) 1307–1343. [28]A. Lins, W. de Melo, C.C. Pugh, On Liénard’s equation, in: Geometry and Topology, Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976, in: Lecture Notes in Math., vol.597, Springer, Berlin, 1977, pp.335–357. [29]C. Li, J. Llibre, Uniqueness of limit cycles for Liénard differential equations of degree four, J. Differential Equations 252(4) (2012) 3142–3162. [30]Chengzhi Li, Jianquan Li, Zhien Ma, Huanping Zhu, Canard phenomenon for an SIS epidemic model with nonlinear incidence, J. Math. Anal. Appl. 420(2) (2014) 987–1004. [31]Chengzhi Li, Huaiping Zhu, Canard cycles for predator–prey systems with Holling types of functional response, J.Differential Equations 254(2) (2013) 879–910. [32]E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, N.Kh. Rozov, Asymptotic Methods in Singularly Perturbed Sys-tems, Monographs in Contemporary Mathematics, Consultants Bureau, New York, 1994, translated from the Rus-sian by Irene Aleksanova. [33]J. Moehlis, Canards in a surface oxidation reaction, J. Nonlinear Sci. 12(4) (2002) 319–345. [34]Daniel Panazzolo, Desingularization of Nilpotent Singularities in Families of Planar Vector Fields, Mem. Amer. Math. Soc., vol.158(753), 2002, viii+108. [35]R. Roussarie, Putting a boundary to the space of Liénard equations, Discrete Contin. Dyn. Syst. 17(2) (2007) 441–448. [36]R. Roussarie, F. Wagener, A study of the Bogdanov–Takens bifurcation, Resenhas 2(1) (1995) 1–25. [37]S. Smale, Mathematical problems for the next century, in: Mathematics: Frontiers and Perspectives, Amer. Math. Soc., Providence, RI, 2000, pp.271–294. [38]Floris Takens, Forced oscillations and bifurcations, in: Applications of Global Analysis, I, Sympos., Utrecht State Univ., Utrecht, 1973, in: Comm. Math. Inst. Rijksuniv. Utrecht, vol.3, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, pp.1–59. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1016/j.jde.2016.10.008 | - |
dc.identifier.isi | 000389682300012 | - |
item.contributor | HUZAK, Renato | - |
item.fullcitation | HUZAK, Renato (2017) Regular and slow-fast codimension 4 saddle-node bifurcations. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 262 (2), p. 1119-1154. | - |
item.accessRights | Open Access | - |
item.fulltext | With Fulltext | - |
item.validation | ecoom 2018 | - |
crisitem.journal.issn | 0022-0396 | - |
crisitem.journal.eissn | 1090-2732 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SlowFastCodimensionFour.pdf | Peer-reviewed author version | 1.63 MB | Adobe PDF | View/Open |
1-s2.0-S0022039616303333-main.pdf Restricted Access | Published version | 1.39 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.