Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22744
Title: Derived equivalences for hereditary Artin algebras
Authors: Stanley, Donald
VAN ROOSMALEN, Adam-Christiaan 
Issue Date: 2016
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Source: ADVANCES IN MATHEMATICS, 303, p. 415-463
Abstract: We study the role of the Serre functor in the theory of derived equivalences. Let A be an abelian category and let (U, V) be a t-structure on the bounded derived category DbA with heart H. We investigate when the natural embedding H -> D(b)A can be extended to a triangle equivalence (DH)-H-b -> D(b)A. Our focus of study is the case where A is the category of finite dimensional modules over a finite-dimensional hereditary algebra. In this case, we prove that such an extension exists if and only if the t-structure is bounded and the aisle U of the t-structure is closed under the Serre functor. (C) 2016 Elsevier Inc. All rights reserved.
Notes: [Stanley, Donald] Univ Regina, Dept Math & Stats, Regina, SK S4S 4A5, Canada. [van Roosmalen, Adam-Christiaan] Univ Hasselt, Dept WNI, Campus Diepenbeek, B-3590 Diepenbeek, Belgium.
Keywords: t-Structure; derived equivalence; hereditary algebra; serre duality;t-Structure; Derived equivalence; Hereditary algebra; Serre duality
Document URI: http://hdl.handle.net/1942/22744
ISSN: 0001-8708
e-ISSN: 1090-2082
DOI: 10.1016/j.aim.2016.08.016
ISI #: 000386192700013
Rights: © 2016 Elsevier Inc. All rights reserved.
Category: A1
Type: Journal Contribution
Validations: ecoom 2017
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
stanley 1.pdf
  Restricted Access
Published version807.44 kBAdobe PDFView/Open    Request a copy
Derived_Equivalences.pdfPeer-reviewed author version522.18 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.