Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22782
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeysman, Pieter-
dc.contributor.authorTiteca, Kevin-
dc.contributor.authorEyckerman, Sven-
dc.contributor.authorTavernier, Jan-
dc.contributor.authorGOETHALS, Bart-
dc.contributor.authorMartens, Lennart-
dc.contributor.authorVALKENBORG, Dirk-
dc.contributor.authorLaukens, Kris-
dc.date.accessioned2016-11-28T12:51:02Z-
dc.date.available2016-11-28T12:51:02Z-
dc.date.issued2015-
dc.identifier.citationMASS SPECTROMETRY REVIEWS, 36 (5), p. 600-614-
dc.identifier.issn0277-7037-
dc.identifier.urihttp://hdl.handle.net/1942/22782-
dc.description.abstractThe elucidation of molecular interaction networks is one of the pivotal challenges in the study of biology. Affinity purification—mass spectrometry and other co-complex methods have become widely employed experimental techniques to identify protein complexes. These techniques typically suffer from a high number of false negatives and false positive contaminants due to technical shortcomings and purification biases. To support a diverse range of experimental designs and approaches, a large number of computational methods have been proposed to filter, infer and validate protein interaction networks from experimental pull-down MS data. Nevertheless, this expansion of available methods complicates the selection of the most optimal ones to support systems biology-driven knowledge extraction. In this review, we give an overview of the most commonly used computational methods to process and interpret co-complex results, and we discuss the issues and unsolved problems that still exist within the field-
dc.description.sponsorshipThis work was supported by the Research Foundation-Flanders (FWO) project “Evolving graphs” (G.0903.13N); and the agency for Innovation by Science and Technology (IWT) SBO project “InSPECtor” (120025) and a personal grant to KT.-
dc.language.isoen-
dc.rights© 2015 Wiley Periodicals, Inc.-
dc.subject.otherbioinformatics; co-complex purification; protein–protein interaction networks-
dc.titleProtein complex analysis: From raw protein lists to protein interaction networks-
dc.typeJournal Contribution-
dc.identifier.epage614-
dc.identifier.issue5-
dc.identifier.spage600-
dc.identifier.volume36-
local.bibliographicCitation.jcatA1-
dc.description.notesMeysman, P (reprint author), Univ Antwerp, Dept Math & Comp Sci, ADReM, Middelheimlaan 1, Antwerp, Belgium. pieter.meysman@uantwerpen.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusIn press-
dc.identifier.doi10.1002/mas.21485-
dc.identifier.isi000407931000003-
item.fulltextWith Fulltext-
item.contributorMeysman, Pieter-
item.contributorTiteca, Kevin-
item.contributorEyckerman, Sven-
item.contributorTavernier, Jan-
item.contributorGOETHALS, Bart-
item.contributorMartens, Lennart-
item.contributorVALKENBORG, Dirk-
item.contributorLaukens, Kris-
item.fullcitationMeysman, Pieter; Titeca, Kevin; Eyckerman, Sven; Tavernier, Jan; GOETHALS, Bart; Martens, Lennart; VALKENBORG, Dirk & Laukens, Kris (2015) Protein complex analysis: From raw protein lists to protein interaction networks. In: MASS SPECTROMETRY REVIEWS, 36 (5), p. 600-614.-
item.accessRightsOpen Access-
item.validationecoom 2018-
crisitem.journal.issn0277-7037-
crisitem.journal.eissn1098-2787-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Meysman-2015-Mass Spectormetry Reviews-Protein complex analysis.pdfPeer-reviewed author version399.46 kBAdobe PDFView/Open
Meysman_et_al-2017-Mass_Spectrometry_Reviews.pdf
  Restricted Access
Published version451.64 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.