Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/22974
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | PRESOTTO, Dennis | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2017-01-05T08:45:36Z | - |
dc.date.available | 2017-01-05T08:45:36Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Journal of Noncommutative Geometry, 10(1), p. 221-244 | - |
dc.identifier.issn | 1661-6952 | - |
dc.identifier.uri | http://hdl.handle.net/1942/22974 | - |
dc.description.abstract | In this paper we generalize some classical birational transformations to the noncommutative case. In particular we show that 3-dimensional quadratic Sklyanin algebras (noncommutative projective planes) and 3-dimensional cubic Sklyanin algebras (non-commutative quadrics) have the same function field. In the same veinwe construct an analogue of the Cremona transform for non-commutative projective planes. | - |
dc.description.sponsorship | The First author was supported by a Ph.D. fellowship of the Research Foundation Flanders(FWO), the second author is a senior researcher of the FWO. | - |
dc.language.iso | en | - |
dc.publisher | EUROPEAN MATHEMATICAL SOC-EMS | - |
dc.rights | European Mathematical Society | - |
dc.subject.other | Birational transformation | - |
dc.subject.other | Cremona transform | - |
dc.subject.other | Sklyanin algebras | - |
dc.subject.other | non-commutative surfaces | - |
dc.title | Noncommutative versions of some classical birational transformations | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 244 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 221 | - |
dc.identifier.volume | 10 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | PUBLISHING HOUSE GMBH INST MATHEMATIK TECHNISCHE UNIV BERLIN STRASSE 17, JUNI 136, BERLIN 10623, GERMANY | - |
dc.relation.references | [1] M. Artin and W.F. Schelter. Graded algebras of global dimension 3. Adv.Math, 66:171{216, 1987. [2] M. Artin, J. Tate, and M. Bergh. Modules over regular algebras of dimension 3. Inventiones mathematicae, 106(1):335{388, 1991. [3] M. Artin, J. Tate, and M. Van den Bergh. Some algebras associated to automorphisms of elliptic curves. In P. et al. Cartier, editor, The Grothendieck Festschrift, volume 1 of Modern Birkhuser Classics, pages 33{85. Birkhuser Boston, 1990. [4] M. Artin and M. Van den Bergh. Twisted homogeneous coordinate rings. Journal of Algebra, 133(2):249{271, 1990. [5] M. Artin and J.J. Zhang. Noncommutative projective schemes. Advances in Mathematics, 109(2):228 { 287, 1994. [6] A. Bondal and A. Polishchuk. Homological properties of associative algebras: the method of helices. Russian Acad. Sci. Izv. Math, 42:219{260, 1994. [7] M. Brandenburg. Rosenberg's reconstruction theorem (after gabber). arXiv:1310.5978 [math.AG], 2013. [8] D.R.Stephenson. Artin Schelter Regular algebras of global dimension three. Journal of Alge- bra, 183:55{73, 1996. [9] Edgar Enochs and Sergio Estrada. Relative homological algebra in the category of quasi- coherent sheaves. Adv. Math., 194(2):284{295, 2005. [10] Pierre Gabriel. Des cat egories ab eliennes. Bull. Soc. Math. France, 90:323{448, 1962. [11] C. Nastasescu and F. van Oystaeyen. Methods of Graded Rings, volume 1836 of Lecture Notes in Mathematics. Springer, 2004. [12] Constantin Nastasescu and F. Van Oystaeyen. Graded and ltered rings and modules. Springer, Berlin, 1979. [13] A. Polishchuk. Noncommutative proj and coherent algebras. Math. Res. Lett., 12(1):63{74, 2005. [14] D. Rogalski, S.J. Sierra, and J.T. Sta ord. Classifying orders in the Sklyanin algebra. arXiv:1308.2213, 2013. [15] D. Rogalski, S.J. Sierra, and J.T. Sta ord. Noncommutative blowups of elliptic algebras. Algebras and Representation Theory, pages 1{39, 2014. [16] A. L. Rosenberg. The spectrum of abelian categories and reconstruction of schemes. In Rings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996), pages 257{274. Dekker, New York, 1998. [17] S. J. Sierra. G-algebras, twistings, and equivalences of graded categories. Algebr. Represent. Theory, 14(2):377{390, 2011. [18] S.J. Sierra. Talk: Ring-theoretic blowing down (joint work with Rogalski, D. and Sta ord, J.T.). Workshop Interactions between Algebraic Geometry and Noncommutative Algebra, 2014. [19] S. P. Smith. Non-commutative Algebraic Geometry. lecture notes. University of Washington, 2000. [20] J. T. Sta ord and M. Van den Bergh. Noncommutative curves and noncommutative surfaces. Bull. Amer. Math. Soc. (N.S.), 38(2):171{216, 2001. [21] M. Van den Bergh. A Translation Principle for the Four-Dimensional Sklyanin Algebras . Journal of Algebra, 184(2):435 { 490, 1996. [22] M. Van den Bergh. Blowing up non-commutative smooth surfaces. Mem. Amer. Math. Soc., 154(734), 2001. [23] M. Van den Bergh. Non-commutative quadrics. ArXiv e-prints, 2008. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.4171/JNCG/232 | - |
dc.identifier.isi | 000376334200006 | - |
dc.identifier.url | www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=10&iss=1&rank=6&srch=searchterm%7Cpresotto | - |
dc.identifier.eissn | 1661-6960 | - |
local.uhasselt.international | no | - |
item.fulltext | With Fulltext | - |
item.contributor | PRESOTTO, Dennis | - |
item.contributor | VAN DEN BERGH, Michel | - |
item.fullcitation | PRESOTTO, Dennis & VAN DEN BERGH, Michel (2016) Noncommutative versions of some classical birational transformations. In: Journal of Noncommutative Geometry, 10(1), p. 221-244. | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2017 | - |
crisitem.journal.issn | 1661-6952 | - |
crisitem.journal.eissn | 1661-6960 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Noncommutative birational transformation.pdf | Peer-reviewed author version | 324.19 kB | Adobe PDF | View/Open |
8449.pdf Restricted Access | Published version | 346.38 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.