Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23065
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBunouf, Pierre-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2017-02-06T10:22:43Z-
dc.date.available2017-02-06T10:22:43Z-
dc.date.issued2016-
dc.identifier.citationPHARMACEUTICAL STATISTICS, 15(6), p. 494-506-
dc.identifier.issn1539-1604-
dc.identifier.urihttp://hdl.handle.net/1942/23065-
dc.description.abstractModern analysis of incomplete longitudinal outcomes involves formulating assumptions about the missingness mechanisms and then using a statistical method that produces valid inferences under this assumption. In this manuscript, we define missingness strategies for analyzing randomized clinical trials (RCTs) based on plausible clinical scenarios. Penalties for dropout are also introduced in an attempt to balance benefits against risks. Some missingness mechanisms are assumed to be non-future dependent, which is a subclass of missing not at random. Non-future dependent stipulates that missingness depends on the past and the present information but not on the future. Missingness strategies are implemented in the pattern-mixture modeling framework using multiple imputation (MI), and it is shown how to estimate the marginal treatment effect. Next, we outline how MI can be used to investigate the impact of dropout strategies in subgroups of interest. Finally, we provide the reader with some points to consider when implementing pattern-mixture modeling-MI analyses in confirmatory RCTs. The data set that motivated our investigation comes from a placebo-controlled RCT design to assess the effect on pain of a new compound.-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL-
dc.rightsCopyright (c) 2016 John Wiley & Sons, Ltd.-
dc.subject.otherincomplete longitudinal outcome; missing not at random; non-future dependence; pattern-mixture model; multiple imputation-
dc.subject.otherincomplete longitudinal outcome; missing not at random; non-future dependence; pattern-mixture model; multiple imputation-
dc.titleImplementation of pattern-mixture models in randomized clinical trials-
dc.typeJournal Contribution-
dc.identifier.epage506-
dc.identifier.issue6-
dc.identifier.spage494-
dc.identifier.volume15-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notes[Bunouf, P.] Labs Pierre Fabre, Toulouse, France. [Molenberghs, G.] Univ Hasselt, I BioStat, Hasselt, Belgium. [Molenberghs, G.] Katholieke Univ Leuven, I BioStat, Hasselt, Belgium.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/pst.1780-
dc.identifier.isi000388565400005-
item.validationecoom 2017-
item.contributorBunouf, Pierre-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationBunouf, Pierre & MOLENBERGHS, Geert (2016) Implementation of pattern-mixture models in randomized clinical trials. In: PHARMACEUTICAL STATISTICS, 15(6), p. 494-506.-
crisitem.journal.issn1539-1604-
crisitem.journal.eissn1539-1612-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
bunouf 1.pdf
  Restricted Access
Published version651.48 kBAdobe PDFView/Open    Request a copy
SMMR150625.pdfPeer-reviewed author version235.87 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.