Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSHIROUDI, Abolfazl-
dc.contributor.authorZahedi, Ehsan-
dc.contributor.authorOliaey, Ahmad Reza-
dc.contributor.authorDELEUZE, Michael-
dc.date.accessioned2017-02-17T14:53:31Z-
dc.date.available2017-02-17T14:53:31Z-
dc.date.issued2017-
dc.identifier.citationCHEMICAL PHYSICS, 485-486, p. 140-148-
dc.identifier.issn0301-0104-
dc.identifier.urihttp://hdl.handle.net/1942/23129-
dc.description.abstractThe thermal decomposition kinetics of 2-chloroethylsilane and derivatives in the gas phase has been studied computationally using density functional theory, along with various exchange-correlation functionals (UM06-2x and ωB97XD) and the aug-cc-pVTZ basis set. The calculated energy profile has been supplemented with calculations of kinetic rate constants under atmospheric pressure and in the fall-off regime, using transition state theory (TST) and statistical Rice–Ramsperger–Kassel–Marcus (RRKM) theory. Activation energies and rate constants obtained using the UM06-2x/aug-cc-pVTZ approach are in good agreement with the experimental data. The decomposition of 2-chloroethyltriethylsilane species into the related products [C2H4 + Et3SiCl] is characterized by 6 successive structural stability domains associated to the sequence of catastrophes C8H19SiCl: 6-C†FCC†[FF]-0: C6H15SiCl + C2H4. Breaking of Si–C bonds and formation of Si–Cl bonds occur in the vicinity of the transition state.-
dc.description.sponsorshipAll calculations presented in this work have been performed at the Flemish Supercomputer Center (Vlaams Supercomputer Centrum). This cluster has been financed by budgets obtained from the Katholieke Universiteit Leuven, as well as from individual contributions by users, and funding obtained from the Hercules foundation and the Flemish government.-
dc.language.isoen-
dc.rights(c) 2017 Elsevier B.V. All rights reserved.-
dc.subject.othermolecular modelling; energy barriers; 2-Chloroethylsilane; elimination processes; rate constants; reaction mechanisms; electron localization function-
dc.titleReaction mechanisms and kinetics of the elimination processes of 2-chloroethylsilane and derivatives: A DFT study using CTST, RRKM, and BET theories-
dc.typeJournal Contribution-
dc.identifier.epage148-
dc.identifier.spage140-
dc.identifier.volume485-486-
local.bibliographicCitation.jcatA1-
dc.description.notesShiroudi, A (reprint author), Islamic Azad Univ, East Tehran Branch, Young Researchers & Elite Club, Tehran, Iran. abolfazl.shiroudi@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.chemphys.2017.01.009-
dc.identifier.isi000397696300016-
dc.identifier.urlhttp://www.sciencedirect.com/science/article/pii/S030101041631031X-
item.validationecoom 2018-
item.contributorSHIROUDI, Abolfazl-
item.contributorZahedi, Ehsan-
item.contributorOliaey, Ahmad Reza-
item.contributorDELEUZE, Michael-
item.accessRightsOpen Access-
item.fullcitationSHIROUDI, Abolfazl; Zahedi, Ehsan; Oliaey, Ahmad Reza & DELEUZE, Michael (2017) Reaction mechanisms and kinetics of the elimination processes of 2-chloroethylsilane and derivatives: A DFT study using CTST, RRKM, and BET theories. In: CHEMICAL PHYSICS, 485-486, p. 140-148.-
item.fulltextWith Fulltext-
crisitem.journal.issn0301-0104-
crisitem.journal.eissn1873-4421-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S030101041631031X-main.pdfPublished version1.91 MBAdobe PDFView/Open
Supplementary data.pdfSupplementary material118.87 kBAdobe PDFView/Open
Manuscript_S3.pdf
  Restricted Access
Published version1.29 MBAdobe PDFView/Open    Request a copy
Manuscript_F.pdfPeer-reviewed author version2.8 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

5
checked on Apr 30, 2024

Page view(s)

64
checked on Sep 6, 2022

Download(s)

216
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.